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ABSTRACT
Background: Recently, tissue engineering has developed approaches for repair and restoration 
of damaged skeletal system based on different scaffolds and cells. This study evaluated the ability 
of differentiated osteoblasts from adipose‑derived stem cells (ADSCs) seeded into hydroxyapatite/
tricalcium phosphate (HA‑TCP) to repair bone.
Methods: In this study, ADSCs of 6 canines were seeded in HA‑TCP and differentiated into 
osteoblasts in osteogenic medium in vitro and bone markers evaluated by reverse transcription 
polymerase chain reaction (RT‑PCR). Scanning electron microscopy (SEM) was applied for 
detection of cells in the pores of scaffold. HA‑TCP with differentiated cells as the test group and 
without cells as the cell‑free group were implanted in separate defected sites of canine’s tibia. 
After 8 weeks, specimens were evaluated by histological, immunohistochemical methods, and 
densitometry test. The data were analyzed using the SPSS 18 version software.
Results: The expression of Type I collagen and osteocalcin genes in differentiated cells were 
indicated by RT‑PCR. SEM results revealed the adhesion of cells in scaffold pores. Formation of 
trabecular bone confirmed by histological sections that revealed the thickness of bone trabecular 
was more in the test group. Production of osteopontin in extracellular matrix was indicated in both 
groups. Densitometry method indicated that strength in the test group was similar to cell‑free 
group and natural bone (P > 0.05).
Conclusions: This research suggests that ADSCs‑derived osteoblasts in HA‑TCP could be used 
for bone tissue engineering and repairing.
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INTRODUCTION

Since large bone lesions never heal spontaneously, 
the repair and regeneration of bone defects is a major 
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clinical challenge.[1,2] Currently, autograft, allograft, 
xenograft, and Allizarov methods have been used for 
the bone repair.[3,4] These methods have disadvantages 
such as the antigens transfer, the need for invasive 
surgery, donor site morbidity, limited available bone, 
and absorption of the bone graft.[4] Furthermore, the 
use of mechanical devices or artificial organs have 
limitations because of the risk of infection, obstruction 
of the blood flow, and the low durability.[5] Thus, tissue 
engineering based on different scaffolds and cells 
has been developed for the repair and restoration of 
damaged skeletal system.[6,7]

Bio ceramics, polyesters, and hydrogels are used as drugs 
or growth factor deliveries and as scaffolds in bone tissue 
engineering.[7‑10]

Although polyesters have better mechanical 
properties, they produce acidic materials and cause 
inflammation.[11,12] In contrast, bioceramics such as 
hydroxyapatite and tricalcium phosphate (HA‑TCP) 
display excellent osteoconductive properties and 
could be designed in the appropriate shape and size 
without any inflammation and rejection following 
transplantation.[13‑16] Moreover, implanted bioceramics 
in contact with bone matrix and cells induces 
repair of damaged and degenerated tissues.[17] The 
choice of suitable cell source cell is vital for the 
engineering of bone tissue. The ethical issues and the poor 
known characteristics limit the use of embryonic stem 
cells and induced pluripotent stem cells.[18]

Adipose tissue is an attractive source for stem cells.[19] 
Adipose‑derived stem cells (ADSCs) are multi potent 
which can differentiate into variety of cell lineages.[20] 
ADSCs have various advantages over the bone marrow 
mesenchymal stem cells (MSCs) such as the ease of 
accessibility, the abundance in number, high proliferation 
rate, and no need to preserve for long time in cell 
banks.[21‑23]

Studies have demonstrated that ADSCs could be 
differentiated into bone cells and produce organic 
and mineralized extracellular matrix and alkaline 
phosphatase enzyme in vitro.[24] Auto and allograft 
transplant of ADSCs is possible without the risk of 
rejection or transfer of contagious diseases due to their 
lack of HLA‑DR antigens.[23] Some researchers have 
reported the benefits of ADSCs‑scaffold constructs, 
such as collagen and alginate scaffold, in regenerative 
medicine.[25,26]

In this study, the repair of tibial defects in animal model 
was investigated with differentiated osteoblasts from 
ADSCs in HA‑TCP scaffold in comparison to the cell‑free 
HA‑TCP.

METHODS

Adipose tissue harvesting
In this experiment, six healthy dogs with average weight 
of 20–35 kg were used. Ethical principles in animal 
researches were considered. Ketamine (15 mg/kg) 
(Alfasan, Holland) and xylazine 2 mg/kg intramuscular 
with orotracheal intubation were used for anesthesia 
followed by respiratory administration of halothane and 
N2O. After injecting local anesthesia with lidocaine 2% 
plus epinephrine 1:100,000, an incision with a length of 
5 cm was performed in cervical area. After dissection, 
about 20 g subcutaneous fats were harvested and 
maintained in phosphate‑buffered saline (PBS) (Sigma).

Isolation of adipose‑derived stem cells
Canine ADSCs were isolated according to previous 
protocol.[18] Fat tissue was washed with PBS (Sigma) and 
digested with Type I collagenase enzyme (1 mg per 1 g 
tissue) at 37°C for 30 min. After centrifuge, cell pellet 
resuspended and cultured in Dulbecco modified eagle 
medium (DMEM) (Gibco®) supplemented with fetal 
bovine serum 10% (Gibco®) and penicillin‑streptomycin 
1% (Gibco®). Nonadherent cells were removed from 
culture by medium changing. Hence, adherent cells 
were expanded as monolayer cultures at 5% CO2 with a 
temperature of 37ºC. Medium was changed twice every 
week.

Osteogenic induction
After expansion in the control medium, 5 × 106 cells/ml 
ADSCs were seeded onto witted HA‑TCP blocks scaffold 
which were purchased from Ceraform Co., Germany, 
in the size of 3 mm × 3 mm × 3 mm (35–65%) 
and cultured in osteogenic medium. The osteogenic 
medium contained DMEM, 10% fetal bovine serum, 
10 mM b‑glycerol‑3‑phosphate (Sigma), 10 nM 
dexamethasone (Sigma), 100 mg/ml L‑ascorbic acid 
(Sigma), and 1% penicillin/streptomycin. The medium 
was replaced every 3 days and after 14 days, scaffold/cell 
investigated by scanning electron microscopy (SEM) 
and reverse transcription polymerase chain reaction 
(RT‑PCR).

Scanning electron microscopy
The blocks of HA‑TCP/cell were washed with PBS and 
fixed with glutaraldehyde 2.5% for 2 h. Then, blocks 
were dehydrated by ascending ethanol and coated by thin 
layer of gold by sputter coater. Prepared samples were 
visualized by SEM (Philips XL 30).

In vivo implantation and specimen harvesting
The canines were anesthetized and after sterilization of 
skin, tibia bone was exposed and two cylindrical defected 
sites in 10 mm diameter were created on the anterior 
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aspect of tibia by trephine bur (Meisinger, Dusseldorf, 
Germany) [Figure 1].

The defected sites were filled with HA‑TCP contained 
differentiated cells as the test group and without cells as 
the cell‑free group and marked with titanium screw. The 
wound was closed in layered fashion (Vicryl 3.0, GmbH 
and Co., KG ‑ Norderstedt, Germany). After the surgery, 
animals received ceftriaxone 1 g intravenous (Loghman 
pharmaceutical and Hygienic Co.) daily for 5 days.

After 8 weeks similar to previous surgery, animals were 
anesthetized and prepared for surgery. Biopsies were 
applied by a larger trephine bur (12.0 mm) and used for 
histological, immunohistochemical (IHC) methods, and 
densitometry test.

Reverse transcription polymerase chain reaction 
analysis
The expression of specific bone markers (Type I collagen 
and osteocalcin) was proved with RT‑PCR. Cells RNAs 
isolated by RNX‑plus Isolation Kit (CinnaGen Inc., 
Iran); cDNA was synthesized from extracted RNA using 
First‑strand cDNA Synthesis Kit (Frementase). For 
PCR reaction, cDNA, dNTPs, PCR buffer, Taq DNA 
polymerase, and primers (Frementase) were used.

PCR reaction mixture contained 2.5 µl cDNA, 1 × PCR 
buffer (AMS), 200 µM dNTPs, 1 unit Taq DNA Polymerase 
(Fermentas), and 0.5 µM of each primer (osteocalcin: 
forward 5'‑ACACTCCTCGCCCTATTG ‑3’; reverse 
5’‑GATGTGGTCAGCCAACTC‑ 3’, 371 bp, Type I collagen: 
forward, 5’‑ ACTTAGAGTATCTATAAACTTGATACTC‑ 3’, 
reverse, 5’‑TAAATTGTTACTAAGCATATTATAATTAACATC 
‑3’599 bp).

For amplification, initial denaturation at 95°C for 5 min 
followed by 35 cycles of 93°C, 65ºC, and 72ºC for 30, 45, 
and 40 s, respectively. The PCR results were determined 
in 1% agarose gel and then stained by ethidium bromide 
staining and visualized by UV trans‑illuminator. After 
fixation of samples in neutral buffered formalin 10% 
and decalcification by using of EDTA solution, samples 
were dehydrated with ethyl alcohol, cleared with 
xylene, and embedded with paraffin. These blocks were 
sectioned with microtome at 5 µm thickness. Sections 
were stained with hematoxylin and eosin. In addition, 

trichrome mallory staining was done as described.[3] 
In this procedure, the sections stained in acid fuschin 
1% (Merck) solution and then aniline blue 0.5% (Merck), 
orange G 2% (Merck), and oxalic acid 2% (Sigma) in 
distilled water.[3]

Immunohistochemistry
For antigen retrieval, the specimens were deparaffinized 
and treated with citrate buffer 0.01 mol/l, pH 6.0 (Merck), 
heated at 100°C for 6 × 2 min.

For blocking of endogenous peroxidase, sections were 
incubated in H2O2 3% for 10 min. The mouse monoclonal 
antibody against osteopontin (1:300 concentration; Santa 
Cruz Biotechnology, USA) was used at 4°C overnight. 
Then, specimens were incubated in secondary antibody 
conjugated with horse radish peroxidase (Abcam) for 
30 min. After staining with diaminobenzidine (Sigma), 
hematoxylin dye was used to counter staining.

Densitometry test
Some of the biopsy samples were placed in acrylamide 
mold for analyzing their average strength and evaluated 
by “Tensometer Universal” equipment. Then, the rates 
of strength were compared with normal tissues and the 
control group.

Statistical analysis
All data were considered as means and standard deviation. 
The data were subjected to statistical analysis using the 
Wilcoxon test. Differences at P < 0.05 were considered 
significant in this study.

RESULTS

Cell culture
The canine ADSCs in third passage were observed 
with spindle fibroblast‑like cells within a homogeneous 
monolayer culture [Figure 2].

Figure 2: Subcutaneous adipose-derived stem cells in third passage 
(×40)

Figure 1: (a) Cylindrical defects on the anterior aspect of tibia by 
trephine bur. (b) After 8 weeks, biopsies from repaired sites were 
removed for histological evaluation

ba

[Downloaded free from http://www.ijpvmjournal.net on Sunday, April 03, 2016, IP: 176.102.245.154]



International Journal of Preventive Medicine 2016, 7:62 http://www.ijpvmjournal.net/content/7/1/62

For induction of osteogenic differentiation, ADSCs of 
third passage were seeded in HA‑TCP scaffold and were 
cultured in osteogenic medium. SEM results represented 
that the stem cells have adhered in the pores of the 
scaffold and their processes extended and connected 
together [Figure 3a].

Osteoblasts secreted extracellular matrix as deposition of 
granules after osteogenesis induction [Figure 3b].

Reverse transcription polymerase chain reaction 
result
RT‑PCR results indicated the expression of Type I collagen 
and osteocalcin genes in differentiated osteoblasts derived 
from ADSCs. Glyceraldehyde‑3‑phosphate dehydrogenase 
as a housekeeping gene has been expressed in all cells 
[Figure 4].

Histological results
Evaluation of tissue sections revealed the formation of 
bone trabeculae and lacunae. This histological evaluation 
showed that the bone trabecular and the mineral matrices 
were thicker in the test group rather than the cell‑free 
group [Figures 5 and 6].

Analysis of IHC results showed the existence of osteopontin 
glycoprotein in the matrix of two groups, which is 
considered as an important bone marker [Figure 7].

Densitometry result
Densitometry method indicated that the strength in 
the test group was approximately similar to the cell‑free 
group and natural bone (P > 0.05) [Figure 8].

DISCUSSION

In this study, we evaluated the ability of the differentiated 
osteoblasts, obtained from ADSCs and seeded into 
HA‑TCP, to repair the bone defects in comparison to 
HA‑TCP alone and natural bone.

Our results indicated that the thickness of the bone 
trabecular was more in the test group compared to the 
cell‑free group. The production of osteopontin in the 
extracellular matrix was observed in both groups. The 
bone strength in the test group was similar to the cell‑free 
group and natural bone as shown by the densitometry.

Stem cell‑derived osteoblasts play an important role in 
the bone tissue engineering which were considered by 
researchers.[7,27,28] The final aim of tissue engineering 
is to regenerate new tissues via mediators, scaffolds, 
and biological matrices. Different natural and synthetic 
scaffolds were used for tissue engineering in the bone 
repair.[25,26,29‑31] However, scaffolds with similarities to the 
bone matrix could provide a suitable microenvironment 
for MSCs adhesion, proliferation, and differentiation in 
osteogenesis.[32‑34]

Hydroxyapatite is an important element of the bones; 
regarding chemical structure and physical properties, it is 
similar to the natural bone and it is appropriate for bone 
tissue engineering.[35,36]

Hydroxyapatite composed by tricalcium phosphate 
(HA‑TC) has been used with different HA to TCP ratios, 

Figure 4: Expression of Type I collagen and osteocalcin genes in 
differentiated osteoblasts derived from adipose-derived stem cells. 
Glyceraldehyde-3-Phosphate Dehydrogenase as a housekeeping 
gene had expressed in all groups

Figure 3: Scanning electron microscopy technique: (a) Stem cells 
adhered in the pores of scaffold (b) extracellular matrix as deposition 
of granular products secreted by differentiated osteoblasts in the 
pores of hydroxyapatite/tricalcium phosphate scaffold

ba

Figure 5: Formation of bone tissue with trabeculae in bone defects. 
(a) Cell-free group, (b) test group (H and E, ×100)

ba Figure 6: Trichrome mallory staining indicated the existence of 
Type I collagen in bone matrix in both groups. (a) Cell-free group 
(b) test group (×100)

ba
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but bone formation was detected only in HT73 (HA to 
TCP ratio, 7‑3) specimens.[35]

Rathbone et al. reported that HA increased the density of 
the bone mineral of defected radius compared to controls 
in a rabbit model.[37] Another study compared cellseeded 
HA scaffolds by bone marrow stem cell and HA scaffolds 
without cell in the bone regeneration after 8 weeks, they 
showed no difference in bone formation between two 
groups.

Our study showed that the thickness of the bone 
trabecular was more in bone defects implanted by HA‑
TCP with differentiated osteoblasts (from ADSC) 
compared to the cell‑free scaffolds. The presence of cells 
in HA‑TCP scaffold increased the production of the 
mineral matrix. The strength of the HA‑TCP scaffold 
with differentiated osteoblasts was significantly more 
than the cell‑free HA‑TCP

Kim et al. indicated that autologous osteoblasts 
produce more mineral matrix than the autologous 
bone marrow‑derived MSCs in a rabbit radial 
defect model.[38] In our study, differentiated osteoblasts 
from ADSC produced mineral matrix similar to natural 
bone, thus differentiation of stem cells to osteoblasts in 
vitro could compensate the limitation of mineral matrix 
production by undifferentiated stem cells, as shown 
in Kim’s study. Thus, the status of used stem cells can 
affect the results differently.

In addition, Pourebrahim et al. compared an autograft 
corticocancellous tibial to HA‑TCP differentiated 
osteoblasts from ADSCs, in the defects of maxillary bone, 
they observed that the bone formation is higher in autograft 
group.[39] However, we compared HA/TCP‑differentiated 
osteoblasts from ADSCs to cell‑free HA/TCP in tibia defect 
and natural bone and showed that formation of bone 
trabeculae in HA/TCP‑differentiated osteoblasts group was 
more than the cell‑free group but less than natural bone 
while the strength was similar in all groups.

CONCLUSIONS

Our results indicated that HA‑TCP scaffold provides a 
suitable environment for the differentiation and activity 

of osteoblasts. Furthermore, differentiated osteoblasts 
from ADSCs seeded into HA‑TCP could be regarded as 
appropriate factors for bone tissue engineering.
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