
International Journal of Preventive Medicine

© 2016 International Journal of Preventive Medicine | Published by Wolters Kluwer - Medknow

Prediction of Endocrine System Affectation in Fisher 344 Rats 
by Food Intake Exposed with Malathion, Applying Naïve Bayes 
Classifier and Genetic Algorithms
Juan David Sandino Mora, Darío Amaya Hurtado, Olga Lucía Ramos Sandoval

Department of Mechatronics Engineering, Faculty of Engineering, Nueva Granada Military University, Bogotá, Colombia

ABSTRACT
Background: Reported cases of uncontrolled use of pesticides and its produced effects by direct 
or indirect exposition, represent a high risk for human health. Therefore, in this paper, it is shown 
the results of the development and execution of an algorithm that predicts the possible effects in 
endocrine system in Fisher 344 (F344) rats, occasioned by ingestion of malathion.
Methods: It was referred to ToxRefDB database in which different case studies in F344 rats 
exposed to malathion were collected. The experimental data were processed using Naïve 
Bayes  (NB) machine  learning  classifier, which was  subsequently  optimized  using  genetic 
algorithms (GAs). The model was executed in an application with a graphical user interface 
programmed in C#.
Results: There was a tendency to suffer bigger alterations, increasing levels in the parathyroid 
gland in dosages between 4 and 5 mg/kg/day, in contrast to the thyroid gland for doses between 
739 and 868 mg/kg/day. It was showed a greater resistance for females to contract effects on 
the endocrine system by the ingestion of malathion. Females were more susceptible to suffer 
alterations in the pituitary gland with exposure times between 3 and 6 months.
Conclusions: The prediction model based on NB classifiers allowed to analyze all the possible 
combinations of the studied variables and improving its accuracy using GAs. Excepting the 
pituitary gland, females demonstrated better resistance to contract effects by increasing levels 
on the rest of endocrine system glands.
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herbicides and fungicides, and especially for achieving the 
best performance on crops. Therefore, it is common to 
find clinical profiles with accidental poisonings occasioned 
by these products.[1] However, there have been several 
studies which show the indiscriminate use of pesticides 
and its effects on human health, through direct or indirect 
exposure to these chemical compounds.[2‑5] Furthermore, 

INTRODUCTION

Organophosphate pesticides are applied quite frequently 
in farming applications, in the production of insecticides, 
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F344 rats was selected, given its recognized capabilities 
of being a model organism.[18] In this study, malathion 
was supplied to them, with a purity of 97.1%, oral route, 
for 24 months, in adult rats of both genders.[19] The 
collected data were subsequently filtered as “predictor 
variables,” which includes the gender, the applied dose 
in mg/kg/day (very low [4–5], low [29–35], medium 
[359–415], high [739–868]), the dose duration in months 
and the final alteration, if there was one, classified by the 
main endocrine system glands [Figure 2].

To carry out the information processing, given the 
nature of qualitative data, the NB classifier was 
implemented,[20] assimilating independence between 
the predictor variables and their robustness in the 
application of supervised learning.[21,22] To perform 
this task, the original data were classified randomly 
into two categories: Training data and testing data, 
with an initial ratio between the sets of 70% and 30%, 
respectively. The probability calculation (prediction) for 
a variable Ei, given a set of predictor variables Hn, is 
defined in Eq. 1.
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where PP (…) corresponds to the partial probability of 
occurrence Ej. The Eq. 2. defines such probabilities.
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Finally, the probability of an event Ei occurs, given a Hi 
condition, It is set according to Eq. 3.
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Analyzing the calculation of the partial probability, 
if one of the product terms is 0, the entire probability 
calculation will be affected accordingly. This behavior 
usually occurs when it is trying to calculate the 
probability of a variable that does not appear in the data 
array for training. As a result, Laplace smoothing was 
implemented in the method,[23] setting the counters of 
each one of the unions on one.

Classifier error was divided into training and testing 
stages separately. To evaluate this variable, the probability 
for each of the original data is calculated, thus realizing 

current regulations for pesticide usage lacks on defining 
good management practices. It generates enough concern 
from local health agencies to raise awareness to properly 
regulate the application of pesticides.[6‑8]

Malathion is one of the most globally applied 
organophosphate compounds (CAS 121‑75‑5) which is 
applied to control pests on agricultural crops, public 
health, and residential pest control. Although the 
effects on the nervous and endocrine system[9,10] and 
its classification in Group 2A as possibly carcinogenic 
compound,[11] do not stop being troubling to health 
agencies to properly regulate their application.[12‑14] It 
is very relevant for science‑based toxicology and public 
health to carry out researches in animals, considering 
that they are a primary approach for studying and 
improving the quality of human health, from eating 
poisoned food with pesticides and the prediction of 
health effects.[15,16]

Therefore, the purpose of this work is to develop an 
algorithm with the capability to predict the effects in 
the endocrine system, produced for the ingestion of 
malathion in Fisher 344 (F344) rats, implementing and 
optimizing “machine learning” techniques with the 
application of genetic algorithms (GAs). The algorithm 
will have the flexibility to work with multiple databases, 
for the analysis of health effects in various systems of 
both animals and other living things, such as the study of 
several pesticides.

METHODS

First, it was referred to ToxRefDB database[17] in which 
different studied cases in F344 rats exposed to malathion 
were collected. Then, according to the type of the 
obtained data, Naïve Bayes (NB) machine‑learning 
classifier was selected, and it was subsequently 
optimized using GAs. Finally, the model was executed 
in an application with a graphical user interface (GUI) 
programmed in C#, so that the information provided in 
the application, is sufficiently direct and easy to interpret 
for the user [Figure 1].

The available information in ToxRefDB database includes 
several toxicity studies in animals (in vivo) of various 
chemical compounds. For this research, a study with 

Figure 1: General scheme of performed work
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a count of true positives (Tp) and false negatives (FN), as 
shown in Eq. 4.
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It is considered a Tp if the likelihood of the analyzed 
variable is higher than 50%. Finally, the classifier error 
was calculated in Eq. 5.
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Moreover, NB classifier was optimized through GAs to 
improve its robustness [Figure 3]. The initial population 
was constituted with multiple and random NB classifiers. 
Distribution of data intended for training (PT) and 
test (1 – PT) was modified, along with the location of 
each value data in these categories, altering the value of 
a constant, known as the random seed value (SA). The 
proportion of the training data was set up between 40% 
and 80%, and the random seed value was comprised 
between 0 and 5000.

The most relevant parameters in GA settings included to 
manage an initial population with a random distribution, 
the calculation of the accuracy as the phenotype for each 
individual, processed with real numbers thousandths 
precision. Furthermore, a 14‑bit resolution for the 
management of genotypes, the application of the gray 
code to perform genotype – phenotype conversion and 
evolution techniques such as roulette, crossover, elitism, 
and mutation (altering one gene for each genotype 
selected). The full development for the selection of 
the best classifier for each generation of individuals is 
depicted in Figure 4. The algorithm was programmed 
and executed for PC with technical specifications such 
as Intel® Core™ i5‑2500 processor (4 cores at 3.3 GHz), 
8GB DDR2 RAM, and Windows 8.1 × 64 operating 
system.

The algorithm was implemented in a GUI, which 
was developed in C# with the ability to read files 
from databases automatically, adding the sets of the 
predictor variables for the diagnosis of interest. In 
addition, the GUI allows to modify the number of 
individuals in the population, the proportion of evolution 

techniques (elitism, crossover, and mutation), and the 
stop criteria (number of iterations and tolerance).

RESULTS

According to Table 1, a proportional directly tendency 
is reflected in the probability rates to suffer alterations 
by increasing levels in all the studied glands, as long as 
the dosage and the duration of exposure increases and 
vice versa. Nonetheless, at comparing these predictor 
variables while observing the variations, it is visualized 
that the first one (dosage) is not so prevalent than the 
second (duration). Among the effects on the endocrine 
system glands, there will be a trend to suffer bigger 
alterations in the parathyroid gland for very low dosages 
(4–5 mg/kg/day) if the duration of exposure increases.

In addition, it is contemplated that the chance of 
suffering alterations in thyroid gland increase while 
extending the dosage, followed by parathyroid and 
pituitary gland. Besides, it is perceived that female gender 

Figure 3: Implemented algorithm for NB classifier optimization
Figure 2: Filtered data for effects prediction by ingestion of 
Malathion
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is more likely to suffer alterations in pituitary gland with 
low exposure times (3–6 months), without taking into 
account the dosage level. Finally, a faint greater resistance 
is observed in the female gender to suffer effects on the 
endocrine system by ingestion of malathion.

DISCUSSION

The evolution of the population (classifiers) was observed, 
modifying the number of individuals and the proportion 
of evolution techniques, as depicted in Figure 5. In cases 
which low population, the evolution of the classifiers 
was almost uncontrollable, regardless of the proportions 
of the evolution techniques [Figure 5a]. A small number 
of individuals greatly increase the genotypic variations 
that best individuals suffer, affecting the evolution of 
the population with the passage of various generations. 
The ideal situation is shown in Figure 5b, which was 
developed with 25 individuals and proportions of 
elitism, crossover, and mutation of 15%, 85%, and 30%, 
respectively. If the number of individuals is remarkably 
high [Figure 5c], the evolution of the population just 
gets slight variations. This occurs because there are 

better chances of individuals in view of its high density 
in the initial population; however, the rate of evolution 
is inadequate, and except for substantially increase the 
mutation rate (>40%), the population is susceptible not 
to evolve over generations.

In terms of performance, the proposed algorithm copes 
adequately while varying population density [Table 2]. 
It is observed that GA suitably modified ratio 
data (training – testing); if the number of individuals 
is low, the proportion of data will be better balanced 
and vice versa. In addition, the algorithm converges at 
approximately the same value with different seeds for the 
random distribution of the original data. Finally, a trend to 
improve the performance of the algorithm as n increases 
is seen, due to a lower probability that restrictions may 
reject individuals for the next generations.

The error introduced on the algorithm is significantly 
attenuated by the execution of GAs in the structure of 
NB classifier, unlike the normal execution of classifier, 
where the magnitude of this variable may be better or 
worse if the seed distribution and data proportion are 
chosen manually. Due to the limited data available, which 

Figure 4: Process to obtain the next generation of individuals (classifiers)

[Downloaded free from http://www.ijpvmjournal.net on Tuesday, September 27, 2016, IP: 176.102.239.70]



International Journal of Preventive Medicine 2016, 7:111 http://www.ijpvmjournal.net/content/7/1/111

combinations can be omitted for the prediction of effects 
on the endocrine system, the average magnitude of error 
is considered feasible or appropriate for this study.

Researches focused on identifying and predicting health 
effects from the consumption of pesticides, such as those 

presented by Rayo et al., Altamirano et al. and EPA,[24‑26] 
show the usefulness of the application of NB classifiers 
and neural networks for such tasks. Nevertheless, it is 
observed that the accuracy of implemented techniques 
descends slightly by evaluating a large amount of 
predictor variables. The current research work improves 
the accuracy of these previous studies, by adding GA 
techniques and executing it in the proposed algorithm. 
Researches based on epidemiological models[27] are 
limited only to know the history and effects of poisoning 
in a particular population in which was presented this 
phenomenon, which are employed as complementary 
techniques in such studies. A prediction model based 
on NB classifiers allows to analyze all possibilities of 
predictor variables.

The current work can be used to complement the study 
perform by Campetelli et al.,[28] which relation between a 

Table 2: Algorithm performance for 50 generations

n Elapsed 
time (ms)

Mean 
(ms)

SD 
(ms)

SEM 
1/√(ms)

Seed of 
random 
value

Training 
proportion  

(%)

Classifier 
error (%)

15 553 11.06 14.99 3.87 1476 66.40 11.95
20 70 1.40 0.61 25.69 4314 65.20 13.33
25 166 3.32 6.63 9.71 2829 75.60 11.90
30 123 2.46 1.05 29.22 637 78.90 11.36
35 100 2.00 0.99 35.18 2521 78.20 12.34
40 77 1.54 0.71 47.61 509 78.40 11.99
SD=Standard deviation, SEM=Standard error of mean

Table 1: Probability results of the algorithm of predicting increased levels in endocrine system glands

Dose (mg/kg/day) Duration (months) Gender Parathyroid gland (%) Pituitary gland (%) Thyroid gland (%) Number effects (%)

Very low (4-5) 3 Male 11.01 3.60 2.81 82.58
Female 5.91 9.26 2.11 82.72

6 Male 15.19 4.96 3.88 75.97
Female 8.16 12.79 2.91 76.14

12 Male 38.66 3.16 9.87 48.32
Female 24.49 9.60 8.75 57.15

24 Male 64.11 6.98 20.00 8.90
Female 45.07 23.56 19.68 11.69

Low (29-35) 3 Male 12.76 4.17 6.51 76.56
Female 6.90 10.83 4.93 77.33

6 Male 17.13 5.60 8.74 68.53
Female 9.30 14.59 6.65 69.46

12 Male 38.58 3.15 19.69 38.58
Female 25.17 9.87 17.98 46.98

24 Male 54.23 5.91 33.83 6.03
Female 38.41 20.08 33.55 7.97

Medium (359-415) 3 Male 16.49 6.46 17.68 59.37
Female 9.01 16.95 13.52 60.53

6 Male 20.56 8.06 22.04 49.34
Female 11.28 21.23 16.93 50.55

12 Male 36.10 3.54 38.70 21.66
Female 24.44 11.50 36.68 27.38

24 Male 39.88 5.21 52.25 2.66
Female 27.89 17.49 51.15 3.47

High (739-868) 3 Male 19.69 9.65 26.38 44.29
Female 10.61 24.95 19.90 44.55

6 Male 23.10 11.32 30.94 34.64
Female 12.46 29.30 23.37 34.88

12 Male 35.24 4.32 47.22 13.22
Female 24.02 14.12 45.05 16.81

24 Male 35.18 5.75 57.61 1.47
Female 24.07 18.87 55.19 1.87
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rat‑human mathematical model for the endocrine system, 
will be useful to improve and explore more prediction 
tasks in discovering alterations in glands, with the 
advantage of decrease test in animals.

CONCLUSIONS

It was found a tendency to suffer bigger alterations, 
increasing levels in the parathyroid gland in dosages 
between 4 and 5 mg/kg/day, in contrast to the thyroid gland 
for doses between 739 and 868 mg/kg/day, with greater 
resistance for females to contract effects on the endocrine 
system by the ingestion of malathion. A trend was found 
in female gender to suffer alterations in the pituitary gland 
with exposure times between 3 and 6 months, no matter 
of dosage level. An algorithm to predict effects in the 
endocrine system by ingestion of malathion was developed 
and executed, properly combining the NB classifier and 
GAs to optimize its accuracy.
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