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Introduction
Transfusion is an important medical 
treatment, especially in trauma cases. In 
the following sections, we discuss the 
critical aspects of transfusion medicine. 
These include the pretransfusion 
procedures, molecular structures of genes 
encoding clinically relevant transfusion 
antigens, and several techniques for blood 
group, human platelet antigen (HPA), 
and human leukocyte antigen (HLA) 
typing (i.e., serological matching and 
molecular platforms such as polymerase 
chain reaction (PCR)‑sequence‑specific 
primer (SSP), PCR‑sequence‑specific 
oligonucleotide (SSO) using Luminex, 
and sequence‑based typing [SBT]). We 
conclude by considering future prospects 
for transfusion medicine (e.g., donor 
recruitment strategy). Emphasis is given to 
the molecular bases of blood groups, HPA, 
and HLA because they are the primary 
targets of immune responses and stand 
as major barriers to transfusion success. 
Alloantibodies against these antigens may 
develop before transfusion in sensitized 
patients due to previous transfusion 
and/or pregnancy. Their presence creates 
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another barrier for these important medical 
procedures. Nonetheless, the adverse effects 
of these alloantibodies only appear if there 
are genetic disparities between donors 
and recipients in genes coding for these 
clinically relevant transfusion markers.

Transfusion Medicine
Blood transfusion has been practiced 
throughout human history from Egyptian 
antiquity through Ancient Rome and 
forward to the modern era of hematology. 
Blood has always been viewed as a sacred 
entity. Medieval societies regarded blood as 
an analog to food such that this substance 
was customarily ingested (rather than 
being transfused) as part of their religious 
rituals for rejuvenation, to maintain a 
youthful life and to mythically “calm the 
unrestful soul.”[1,2] In modern medicine, 
blood transfusion is one the most common 
therapies used for saving life as a result of 
severe bleeding and/or anemia.[3‑5]

Pretransfusion procedures

Contemporary blood transfusion practices 
can generally be regarded as safe although 
zero risk is almost impossible to achieve. 
With >90 million of donations annually,[6] 
it is imperative that all blood services 
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should put in place an effective screening procedures to 
safeguard their blood products but at the same time allow 
them to maintain sufficient supplies. As such pretransfusion 
precautionary measures which include screening of 
potential donors, deferral systems, screening donated blood 
for transfusion‑transmitted infection (TTI), and safe storage 
of whole blood and blood products, antibody screening 
and identification and compatibility testing have to be 
implemented.[7]

Donor screening and deferral

Donor guideline criteria are almost standard across 
the world. Ideally, blood donations must be made on 
a voluntary basis, with no financial incentive. In many 
developed countries, 100% voluntary donation has been 
achieved,[8] but in most developing and transitional states, 
contributions are still largely dependent on paid donors 
or come from family members and relatives.[9‑11] Donor 
guideline criteria cover aspects of life history and lifestyle, 
which include age, current and past health conditions such 
as type of illness, medication, surgical procedure, and 
transfusion, travel history, and physical examination by 
measurement of hemoglobin (Hb) and blood pressure level. 
The minimum Hb level requirement is at least 120 g/L for 
women and 130 g/L for men.

Potential donors are required to fill in a questionnaire 
detailing all these aspects. A short interview will be 
carried out on all potential blood donors to clarify any 
doubtful matters before donation.[12] The questionnaire 
and interview aim to identify and exclude prospective 
high‑risk individuals from donating. It is imperative to 
avoid any sources that might contaminate the blood supply 
with any infectious pathogens or certain medications and 
drugs that may threaten a recipient’s health. Likewise, 
these procedures are designed to protect potential 
donors’ health and well‑being, for example, by excluding 
underweight or anemic persons. Once high‑risk individuals 
are identified, they will be prohibited from donating blood 
or blood components depending on the cause of deferral. 
This embargo can be either permanent or temporary. 
The highest risk group contains those individuals who 
are positive for human immunodeficiency virus (HIV), 
syphilis, hepatitis B, and hepatitis C and are sex workers. 
All such persons are deferred permanently from donating 
blood or any blood components. Individuals who are going 
through an abortion, tattooing, or recovering from minor 
or major surgery are prevented from making donations for 
at least 6 months. Contagious diseases such as malaria, 
meningitis, pneumonia, and typhoid also trigger the same 
deferral period. Following immunization, the deferral 
interval can be as short as 48 h to as long as 1 year 
depending on type.[7]

Trying to maximize the safety of blood products means 
that the loss of both donors and blood donations becomes 
inevitable. The National Blood Service UK reported 

losing 60,000 units of blood annually due to their donor 
deferral policy.[13] Worse, it is also reported that donors 
who are temporarily deferred are unlikely to come back 
for subsequent donations.[14‑16] Moreover, recruiting 
new donors also incurs an extra cost for blood services, 
estimated at glucose binding protein 20–30/donor in the 
UK.[13] It is essential for blood services to try to balance 
their strict criteria to ensure public safety while trying 
to minimize the loss of both blood donors and blood 
collections.

In Malaysia, as currently practiced, all qualified donors who 
may be able to donate whole blood should not be <8 weeks 
provided Hb level >12.5 g/dL and not <2 weeks for 
plasma or platelet apheresis donation with a maximum of 
15 L/year.[7] Donations of whole blood, typically of 450 ml, 
can be separated into red cell concentrate, platelets, and 
freshly frozen plasma. Cryoprecipitate can be prepared from 
fresh frozen plasma, while buffy coat is extracted from the 
leukocyte component if requested. Other blood derivatives 
include albumin, coagulation concentrates (factor VIII, von 
Willebrand factor), and immunoglobulin, all of which can 
be fractionated from plasma.[17,18]

The prevalence of TTIs is low,[19] but these cases frequently 
cause fatal outcomes.[20‑22] Hence, there is a legal and 
statutory responsibility for blood services to ensure that 
the blood products that they supply are safe and do not 
transmit blood‑borne pathogens to recipients. Therefore, in 
Malaysia, all blood and blood components must be tested 
for the presence of any transmissible infectious agents such 
as syphilis, hepatitis viruses (hepatitis B virus and hepatitis 
C virus), and HIV.[7] In addition to this mandatory screening, 
blood services may also carry out additional screening 
as deemed necessary to maximize blood safety. Chosen 
tests may depend on the local population, epidemiological 
conditions, and geographical area (e.g., malaria, Chagas 
disease, human T‑cell lymphotropic viruses I/II, and human 
cytomegalovirus). Some discretional screening includes 
checking for any known or emerging pathogens that are 
transmissible by blood include variant Creutzfeldt–Jakob 
disease, babesiosis, dengue, chikungunya, and West Nile 
virus.[23] Therefore, a system should be in place to ensure 
that all blood released into stock have been tested negative 
for TTI.[24‑26]

Compatibility testing

Compatibility testing involves ABO and Rh blood 
group typing, antibody screening, and identification plus 
cross‑matching procedures. All pretransfusion blood must 
be identified according to ABO type and Rh status by 
full grouping procedure (forward and reverse methods). 
Patient’s serum is also screened for the presence of any 
unexpected or clinically relevant antibodies to red cells 
before the blood can be issued.[7] Additional screening for 
other antibodies can be done based on the blood group 
profile in one population.[27]
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In the cross‑matching procedure, a patient’s serum is tested 
directly for compatibility with donor red cells. Oftentimes, 
cross‑match testing is performed minimally using an 
antiglobulin phase when the patient has a positive screening 
test or has a previous record of clinically significant 
antibody. However, with the advance of technology, 
the cross‑matching is no longer restricted to manual 
serological technique but has been expanded to include 
automated testing as well as nonserological molecular 
techniques.[28,29] Any positive antibodies screening must be 
further investigated. If antibody screening test is positive 
and/or incompatible cross‑match detected, antibody 
identification should be performed before transfusion 
using a reagent red cell panel that covers all the significant 
antigens. Once the antibody is identified, blood should be 
selected which is negative for the relevant antigen.[7]

In certain cases, such as in multitransfused patients, other 
blood group antigens (e.g., Kell, Kidd, and MNS) as 
well as HPA and HLA are typed to ensure compatibility 
between donor and recipient. In practice, blood group 
antigen is important for packed/red cell transfusion while 
HPA and HLA are essential for platelet transfusion.[30‑32] 
We would like to highlight that HLA is also crucial in 
the transplantation setting, which does not fall within 
the scope of the present review;  however, the review by 
Edinur et al.[33] provided more details regarding this.  The 
molecular bases of blood groups, HPA, and HLA and their 
typing platforms are discussed in the following sections; 
on genetic markers and genotyping of clinically relevant 
transfusion markers.

Adverse effects of transfusion

Despite stringent donor selection criteria and meticulous 
pretransfusion testing, all transfusions still carry some 
degree of risk. A transfusion reaction can be defined as 
any unfavorable response occurring in a patient during or 
following receipt of any whole blood or blood products 
by transfusion. Adverse reactions can be caused by human 
error at any stage of the pretransfusion procedures.[34‑36] 
Even without any mistakes, there is still a risk of developing 
natural undesirable effects of transfusion. Alloimmunization 
is frequently observed in multiply transfused patients or as 
a result of pregnancy.[37‑39]

Apart from infectious causes, the adverse effects of 
transfusion can be grouped into immune and nonimmune 
and further subdivided into immediate or delayed reactions. 
Immediate reaction usually occurs within 48 h, while 
a delayed reaction may take days to years to develop 
following transfusion. Febrile nonhemolytic transfusion 
reactions, acute hemolytic transfusion reaction (HTR), 
allergic reaction, and anaphylactic reactions as well 
as transfusion‑related acute lung injury all come 
under the category of immediate and immune‑related 
reactions. Complications such as transfusion‑associated 
graft‑versus‑host disease, posttransfusion purpura (PTP), 

alloimmunization, and immunosuppression are considered 
to be part of the delayed and immune‑mediated category. 
For example, immune‑mediated acute HTR is due to ABO 
incompatibility between donor and recipient, which leads 
to intravascular or extravascular hemolysis of red cells.[40] 
In addition, it can be caused by unexpected antibodies to 
the other blood group antigens. The incidence of HTR is 
estimated to be 1:70,000 of units transfused.[41] Malhotra 
et al. reported a case of a patient who developed acute 
HTR only after receiving a few milliliters (ml) of a blood 
transfusion. Further investigation revealed that this patient 
had received a mismatched blood unit. The patient was 
initially mistyped as group “O” instead of their actual 
“Bombay” blood group phenotype due to the discrepancies 
and imprecise interpretation of the serological results.[42] A 
similar case was reported earlier, but this time, the adverse 
reaction was caused by multiple alloantibodies. Here, 
a Korean patient suffered two consecutive episodes of 
acute HTR due to multiple antibodies including anti‑E, 
anti‑C, and anti‑JKb.[43] The lesson to be learned from 
this second case is the importance of antibody screening 
tests during pretransfusion testing. Already standard in 
most countries, this test is being implemented as part 
of the routine procedure in the pretransfusion screening 
(provided in “Compatibility Testing” section). Perhaps, 
this type of screening should be made mandatory 
everywhere, particularly for vulnerable group of patients, 
i.e., in multitransfused patients, pregnant women, and 
preoperative patients, to prevent complications arising from 
blood transfusions. Another example of adverse reaction 
due to blood transfusion is PTP, which is rare, but can 
be life‑threatening. It is defined as thrombocytopenia that 
occurs 5–7 days following red cell or platelet transfusion.[40] 
Its prevalence varies from 1:50,000 to 100,000 transfusions 
and most typically occurs in the middle‑aged and older 
women.[44] PTP is caused by alloimmunization to HPA, 
most commonly due to HPA‑1a, although HPA‑1b, HPA‑3a, 
HPA‑3b, and HPA‑4b have also been documented as 
causal, either as singly or in combinations.[45] For instance, 
Rafei et al. reported a case concerning a middle‑aged 
multiparous woman who developed PTP a week after 
receiving a packed cell transfusion. The culprit in this 
incident was identified as HPA‑1a antibodies.[46] Likewise, 
the literature also contains documented cases of PTP as 
the result of HPA‑1b antibodies, although the frequency 
of such cases are quite low.[47,48] Iron overload and air 
embolisms are two examples of delayed nonmediated 
reactions, while transfusion‑associated circulatory overload 
and damaged erythrocytes can be observed immediately 
due to nonimmune factors.[49,50]

Genetic Markers
Transfusion of blood/blood components is always 
restricted and complicated by incompatibility between 
donor and recipient, especially in multitransfused and 
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descent,[55] while the Kidd phenotype, JK (a+b+) occurs 
frequently in Asians and Caucasians.[56] The Duffy 
blood system which consists of two antigens, Fya and 
Fyb, varies enormously across the world. The Fy (a−
b−) phenotype of the Duffy blood group system is most 
often seen in Black populations with a general consensus 
that this phenotype confers some protection against 
invasion by the malaria parasites Plasmodium vivax and 
Plasmodium knowlesi.[57‑60] A recently approved blood 
group, the JR antigens, namely the JR (a−) phenotype is 
noted to be highest in Japanese populations, particularly 
in Niigata individuals, but also occurs with low frequency 
in Europeans.[61‑63] The following blood group systems 
have been extensively characterized at the population 
level[64,65]  [Table 1 and the following subsections provides 
more information].

ABO blood group system

The precursor for the ABO blood group is the H 
antigen protein, encoded by the H gene on chromosome 
19. The H antigen is converted to A or B antigens 
by α1,3‑N‑acetylgalactosaminyltransferase and 
α1,3‑D‑galactosyltransferase, respectively, encoded by 
the ABO gene complex on chromosome 9. In contrast, 
the O allele contains a deletion (∆261G) in exon 6 
of the B allele resulting in loss of enzymatic activity 
and H antigen remains unchanged.[64,67] Together, 
combinations of A, B, and O alleles produce six 
genotypes (AA, AO, BB, BO, AB, and OO) and four 
phenotypes; A, B, AB, and O. In addition, inactivating 
mutations in H gene produce the very rare autosomal 
recessive phenotype (Oh or Bombay phenotype) and 
carriers develop isoantibodies toward A, B, and H 
antigens.[68] Individual with Bombay phenotype cannot 
accept transfusion even from the otherwise “universal” 
donor with a blood type O.

transfusion‑dependent patients. This is determined by 
several antigens such as blood groups and HPA which 
acting as a marker of tissue identity. For a routine 
transfusion, only ABO and Rhesus need to be matched, 
but this may be extended to include other clinically 
relevant blood groups (Kell, Kidd, Duffy, and MNS), 
HPA, and HLA for highly immunized and multitransfused 
patients.[30,32,38] These antigens are encoded by highly 
polymorphic genes and thus present a challenge 
for finding suitable donors for particular patients. 
Incompatible antigens become targets for the recipient’s 
immune system. Hence, high‑quality donor‑and‑recipient 
matching has become clinically and practically important 
in ensuring successful transfusion procedures. Several 
markers of tissue identity important in transfusion are 
discussed in the following subsections.

Blood groups

Our knowledge about blood groups has evolved at 
rapid pace since their first discovery early in the 
20th century.[51] At the time of writing, there are no less 
than 33 blood systems recognized by the International 
Society of Blood Transfusion, with two more pending 
approval. To name but a few, these systems include the H 
antigen, Rhesus, MNS, Lutheran, Kell, Duffy, and Kidd 
blood groups, with a total of more than 300 antigens 
between them.[52] The ABO system plays the most 
clinically significant role in transfusion followed by the 
highly complex Rh system.

Blood groups are found to be population specific and 
can be used as markers for ethnicity. For examples, 
the Diego antigen, Dia has high prevalence among 
people of Mongoloid origin but rarely found in other 
populations.[53,54] The JSa antigen from the Kell blood 
group belongs almost exclusively to those of African 

Table 1: List of blood groups described in this report and their molecular bases
System Chromosome Protein Polymorphism Molecular basis Amino acid change
ABO 9 Transferase A→B C526G, G703A, C796A, G803C R176G, G235S, L266M, G268A

‑ A→O ∆261G Truncated glycosyltransferase
MNS 4 TM M→N C59T, G71A, T72G S20L, G24E

TM s→S C143T T48M
Rhesus 1 TM D→variant D Deletion/hybrid/SNPs Partial, weak and D‑negative

TM C→c C48G, A178C, G203A, T307C C16W, I60L, S68N, S103P
TM e→E G676C A226P

Lutheran 19 TM Lua→Lub G230A R77H
Kell 7 TM k→K C578T T193M
Duffy 1 TM Fya→Fyb G125A G42D

‑ Fyb→Fy T‑67C (GATA‑1) Noncoding
Kidd 18 TM Jka→Jkb G838A D280N
Diego 17 TM Dia→Dib C2561T P854L
Dombrock 12 GPI Dob→Doa G793G D265N
Colton 7 TM Coa→Cob C134T A45V
GPI: Glycol proteins anchored to the membrane by a glycosylphosphatidylinositol tail, TM=Transmembrane proteins
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Rhesus blood group system

The Rh blood group is clinically important in blood 
transfusion and gestation.[69] The system consists of five 
antigens; D, C, c, E, and e. The D antigen is encoded by 
RHD gene while the other antigens are encoded by the 
RHCE gene [Table 1]. These two genes are closely linked 
and located on chromosome 1p34.3‑p36.1.[70] Individuals 
will either be D‑positive or D‑negative (aka Rhesus‑positive 
and ‑negative, respectively) no matter which RHCE 
antigens they carry. The D‑negative phenotype occurs 
due to mutation in the RHD gene as well as by genetic 
exchange between the highly homologous RHD and RHCE 
genes.[71,72] The same mechanisms have also generated 
other variants of the D antigen such as “weak D” and 
“partial D,” which are found at low incidence in the world 
populations.[73] The most commonly occurring Rhesus 
phenotypes are DCcee in Whites, Dccee in Blacks, and 
DCCee in Asians.[74]

MNS blood group system

The MNS antigens are integral membrane proteins encoded 
by two homologous members of the glycophorin (GYP) 
gene family, GYPA and GYPB, located on long arm 
of chromosome 4.[75,76] The GYPA gene codes for M 
and N blood group antigens, while GYPB gene codes 
for the S and s blood group antigens. These two pairs 
of polymorphic antithetical and codominant antigens 
differ by three (C59T, G71A, T72G) and one (C143T) 
single nucleotide substitutions, respectively [Table 1]. 
Furthers, deletions, misalignment during meiosis, and gene 
conversion between the closely linked and homologous 
GYPA and GYPB genes give rise to low incidence of MNS 
variants such as En (a‑), S‑s‑U‑, Mk and Miltenberger.[77,78]

Kell blood group system

The Kell blood group antigens are 93‑kDa type II 
glycoproteins (GPs) that are linked by a single disulfide 
bond to an integral membrane protein, XK.[79] The Kell 
and XK proteins are encoded by separate genes KELL 
and XK located on chromosomes 7q33 and Xp21.1, 
respectively.[56] There are epistatic interactions between 
these two gene products as the absence of the KX protein 
will reduce expression of the Kell antigens (e.g., as in 
McLeod syndrome; Daniels[80]). The weak expression of 
the Kell antigens can also be seen in the Kmod red blood 
cell (RBC) phenotype which is associated with a missense 
mutation (1208G>A) in exon 10 of the Kell blood group 
gene.[81]

Overall, the Kell blood group system 
comprises >34 serologically defined variants across three 
sets of antigens; K and k; Kpa, Kpb, and Kpc; and Jsa and 
Jsb.[82] The K and its antithetical k allele only differ by a 
T578C substitution which causes a Met193Thr amino 
acid replacement.[83] The Kpb allele is the most common 
in all populations and only differs from Kpa and Kpc by 

a single amino acid substitution at codon 281 of exon 
8. The Kpa codon codes for tryptophan (TGG), Kpb for 
arginine (CGG), and Kpc for glutamine (CAG). Equally, a 
Pro597Leu substitution differentiates between the Jsa and 
Jsb alleles, respectively.[72,84]

Kidd blood group system

The JK or SLC14A1 (solute carrier family 14, member 1) 
gene located on chromosome 18q11‑q12 codes for the Kidd 
antigens. Variants at this locus, the JKA and JKB alleles, 
code for the two codominant Kidd antigens, Jka and Jkb, 
respectively.[80] The JKA/JKB polymorphism involves a 
single nucleotide transition (G838A) that produces the three 
phenotypes: Jk (a + b−), Jk (a − b+), and Jk (a+b+).[85]

The occurrence of the Jknull phenotype or Jk 
(a−b−) has been observed in Polynesian and Finnish 
populations.[86] The Jknull phenotype occurs due to mutations 
in either the 3’‑acceptor splice site of intron 5 (IVS5‑1G>A) 
or the 5‑splice site of intron 7 of JKB allele which lead 
to either skipping of exon 6 (Jk∆6 mutation) or exon 
7 (Jk∆7 mutation), respectively.[87,88] In addition, single 
nucleotide substitutions (C202T, C222A, C582G, T871C, 
G896A, C956T), 723delA, deletion of intron 3 to intron 5 
can also contribute toward a Jknull phenotype.[86,88‑90]

Duffy blood group system

The Duffy antigen chemokine receptor gene is located on 
the long arm of chromosome 1q22‑q23.[56] There are two 
alleles; FY*A and FY*B, which code for Fya and Fyb 
antigens, respectively, that are expressed on RBCs and in 
endothelium, brain, colon, and kidney. They are identified 
as receptors for P. vivax and P. knowlesi.[77,91] The FY*A 
and FY*B alleles differ by a single‑point mutation (G125A) 
that encoding glycine and aspartic acid, respectively.[92] 
These alleles determine three of five known phenotypes: 
Fy (a+b−), Fy (a−b+), and Fy (a+b+).

The fourth phenotype Fy (a−b−) or FybEs (erythroid silent) 
is due to a 67T>C point mutation in the GATA‑1‑binding 
motif of the FY*B promoter.[91,93] Despite having an 
apparent FybEs phenotype, several individuals do express 
weak Fyb antigens (Fya‑bweak) which are associated with 
FY*X allele. This has an Arg89Cys substitution (C286T) in 
an FY*B allelic background.[94]

Dombrock blood group system

The Dombrock antigens Doa and Dob are GPs encoded by 
the DO gene, located on chromosome 12p13.2‑p12.1.[56] 
These antigens are attached to RBC membrane by 
glycosylphosphatidylinositol and incompatibility can cause 
a transfusion reaction.[95,96] Multiple single nucleotide 
substitutions in exon 2 of the DO gene: C378T, T624C, 
and A793G differentiate the Doa and Dob alleles.[97] The 
first two are silent transitions, but the last one causes an 
amino acid change at position 265 from asparagine for Doa 
to aspartic acid for the Dob antigen.[95]
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and form a recognition ligand for T‑cell receptors of 
CD8+ T‑cytotoxic cell receptors.[105] In contrast, HLA 
Class II molecules are usually expressed on the surface 
of antigen presenting cells and are involved in taking 
exogenous peptide fragments to CD4+ T‑cells. The 
Class II ligands are mainly derived from endocytosed 
plasma membrane proteins and extracellular fluid 
proteins. The HLA Class II‑peptide complexes are 
then transported to the cell surface for CD4+ T‑helper 
cell recognition.[106‑108] Generally, HLA molecules are 
involved in recognition of foreign (nonself) peptides, 
which is crucial for disease defense. However, some 
foreign materials may contain components that resemble 
those endogenously expressed by human cells and 
cause predisposing HLA molecules to bind and present 
apparent autoantigens to T‑cells. This process is known 
as molecular mimicry and may trigger autoimmune 
diseases such as ankylosing spondylitis, rheumatoid 
arthritis, narcolepsy, and coeliac disease.[109]

Serological and molecular studies have revealed marked 
differences in levels of variation between α‑ and β‑chains 
of HLA Class II antigens. For example, the α‑chain 
is constant between individuals for HLA‑DR but is 
polymorphic in HLA‑DQ.[104] Mutation and shuffling of 
closely linked HLA loci by a recombinational mechanism 
can account for the extensive diversity of HLA loci.[110] 
More than 3390, 4240, 2950, and 1830 of HLA‑A, ‑B, ‑C, 
and ‑DRB1 alleles (respectively) have been reported 
and compiled in the public HLA database; The IPD and 
IMGT/HLA database.[111]

Colton blood group system

The Colton antigens (Coa and Cob) are encoded by a gene 
on chromosome 7p14.[56,80] The Coa and Cob antigens are 
produced by single nucleotide polymorphism (SNP) (C>T) 
at nucleotide position 134, resulting in an alanine to valine 
change.[98] Alloantibodies against Coa and Cob antigens 
can cause HTR and hemolytic disease of the fetus and 
newborn.[96]

Diego blood group system

The Diego antigens (Dia and Dib) are versions of the red 
cell membrane anion exchanger 1 GP and products of 
SLC4A1 gene (solute carrier family 4, anion exchanger, 
member 1) on chromosome 17q12‑q21.[80] A SNP (C2561T) 
in exon 9 causes an amino acid substitution (Lys658Glu) 
which differentiates these two antigens.[56] The Dia antigen 
is very rare among Africans and Europeans but more 
common among Asians and Indigenous Americans.[96]

Human platelet antigens

The HPAs are GPs found on the surface of anucleate 
platelets and play major role in hemostasis. Here, 
platelet aggregation takes place through interaction 
of HPAs with other vascular endothelium and plasma 
proteins.[99] To date, molecular bases of 29 HPAs have 
been assigned and approved according to guidelines set 
up by The Platelet Nomenclature Committee.[100] However, 
alloantibodies against the high‑ and low‑frequency HPA 
alleles (designated as a and b, respectively) are only 
recorded for HPA‑1 to ‑5 and HPA‑15 and their molecular 
bases are given in Table 2.

Human leukocyte antigen

The major histocompatibility complex (MHC) lies on the 
short arm of human chromosome 6 and encodes a number of 
immune genes, including HLA Class I and II [Figure 1]. The 
HLA Class I antigens consist of noncovalently associated 
of α‑chain GP and β2‑microglobulin.[101] The α‑chain 
GP determines HLA class specificities (i.e., HLA‑A, ‑C, 
and ‑B) and is coded for by the highly polymorphic 
HLA‑A, ‑C, and ‑B genes, located within the classical 
Class I subregion of the MHC complex.[102] In contrast, 
the β2‑microglobulin is nonpolymorphic and encoded by 
a single gene on chromosome 15.[103] The HLA Class II 
antigens are heterodimers of α‑ and β‑chain GPs which 
are encoded by three pairs of genes on HLA‑D region of 
chromosome 6.[104] This region codes for the three types of 
HLA Class II antigens, HLA‑DP, ‑DQ, and ‑DR.

The HLA Class I antigens are present on all nucleated 
cells and play roles in endogenous antigenic peptide 
presentation to CD8+ T cells. The peptide‑binding clefts 
of newly synthesized HLA Class I molecules capture 
endogenously synthesized antigens in the cytosol of 
the cell. The antigenic peptides associated with HLA 
Class I molecules are then moved out to the cell surface 

Figure 1: The major histocompatibility complex region on the short arm 
of human chromosome 6. This region consists of a number of genes 
and most of them associated with immune responses including human 
leukocyte antigen Class I and II and major histocompatibility complex 
Class I chain‑related gene A

Table 2: The molecular bases of human platelet 
antigen‑1 to ‑5 and ‑15

Antigen GP Chromosome Nucleotide change Protein
HPA‑1 GPIIIa 17 176T>C L33P
HPA‑2 GPIba 17 482C>T T145M
HPA‑3 GPIIb 17 2621T>G I843S
HPA‑4 GPIIIa 17 506G>A R143Q
HPA‑5 GPIa 5 1600A>G E505K
HPA‑15 CD109 6 2108C>A S703Y
Nucleotide substitutions are shown as changes from a to b alleles. 
HPA=Human platelet antigen, GP=Glycoprotein
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Genotyping of Clinically Relevant Transfusion 
Markers
It is obvious that the antigens which determine 
compatibility between donor and recipients are encoded 
by polymorphic genes[31,32,45,112] and a wide range of typing 
platforms are available for consideration, including serology 
and molecular typing techniques. The first‑generation 
serological testing methods are relatively easy, have short 
turn‑around times, and have become the gold standard 
in tissue typing laboratories. However, limited supplies 
of monoclonal antibodies and the broad specificity of 
serological testing mean that serological technique is not 
suitable for highly polymorphic antigens. Thus, molecular 
techniques such as PCR‑SSP, PCR‑SSO using Luminex, 
and PCR‑SBT are now becoming the preferred means for 
genetic testing and have their applications been extensively 
reviewed by others.[65,113‑116] However, the DNA based 
typing detects genotype, but it is phenotype that is clinically 
important. Hence, one needs to be absolutely certain that 
the new methods give results that are confirmed by serology 
and are cross‑checked against each other. Even then, DNA 
tests (e.g., PCR‑SSP, PCR‑SSO using Luminex, and SBT) 
can only detect what they are designed to detect and novel 
low‑frequency variants will inevitably escape (unless one 
does full genome sequencing). With serology, there is 
always a chance that the antibodies will pick up novelties 
including nulls. In other context, the new genomic 
technology will make it possible to have high resolution 
genotypic typing for many more people and certainly for 
all regular donors. As we move toward the era of personal 
genomics, data will routinely be available for the complete 
sequences of markers in donors and recipients and we will 
be able to pick up new variants noting that even SNPs that 
do not result in amino acid replacements may influence 
antigen expression levels by changing from a favored 
to a less favored (i.e., low expression due to scarcity of 
matching tRNA) codon. Molecular methods show exact 
variations in particular genes and can improve resolution 
of polymorphic loci to a precision that could not previously 
be achieved using serological  approaches.[82,117]  In addition, 
molecular methods are already superior in many ways to 
the traditional phenotyping and have solved the supply and 
reliability problems sometimes encountered with antisera 
and false results produced by poor cell expression and 
cross‑reactivity. We acknowledge that extensive genotyping, 
including sequencing of multiple blood group loci, may 
be technically feasible but may not be practical or even 
necessary for most patients. Nevertheless, it is indisputable 
that genotyping is a powerful tool to complement and 
overcome limitations of serology as discussed earlier. In 
certain scenarios, molecular genotyping can be the only 
method capable of providing accurate antigen‑matched 
blood units, particularly for multitransfused or highly 
alloimmunized patients.[118‑122] It is technically complicated 
to serotype these groups as their peripheral blood contains 

donor’s transfused red cells,[123] leading to discrepancies 
in the test results.[118,124,125] Furthermore, DNA‑based 
genotyping also facilitates blood typing in patients with 
the typically weak antigen expression of certain genetic 
variants,[126,127] as well as in patients having rare phenotypes 
where there is difficulty in obtaining or an entire absence 
of suitable antisera.[128‑130] This form of genotyping has also 
proved to be superior to conventional serology when it 
comes to typing of fetal blood types obtained from DNA 
in maternal plasma.[131,132] Several molecular platforms 
that are widely applied for genotyping transplantation and 
transfusion markers are briefly discussed in the following 
subsections.

Polymerase chain reaction‑Sequence‑specific primer

Each reaction mixture for SSP contains PCR master 
mix, oligonucleotide primer pairs (allele specific and 
human growth hormone as an internal control), and 
deoxyribonucleotides. Target amplification is carried 
out using thermocycler machines (e.g., GeneAmp® 
PCR System 2700, Applied Biosystems). Agarose gel 
electrophoresis is then used to detect the presence of 
allele‑specific PCR products of known size and the gel 
image can be visualized and recorded electronically using 
an image analyzer (e.g., UVITEC, Cambridge). The 
presence of specific PCR products reflects the type of allele 
possessed by an individual. There are many in‑house and 
commercial PCR‑SSP kits being developed and tested for 
blood groups, HPA, and HLA typing; e.g., the studies by 
Daniels,[96] Gassner et al.,[133] Gassner et al.,[134] Heymann 
and Salama,[135] Prager,[136] Rozman et al.,[137] and Schaffer 
and Olerup.[138]

Polymerase chain reaction‑Sequence‑specific 
oligonucleotide using Luminex

In the Luminex‑based technique, the target regions are 
amplified using biotinylated locus‑specific primers. 
Amplicons are then hybridized to complementary 
bead‑bound oligonucleotide probes following denaturation 
and neutralization procedures. The hybrids are then detected 
using conjugated streptavidin beads and fluorescence 
intensities read by flow analyzer. Allele/gene scores are 
assigned based on reaction patterns of reference standards. 
This high throughput molecular platform is highly 
automated and has a rapid turn‑around time. It is suitable 
for large‑scale genotyping of alleles encoding for red cell 
antigens, HPAs, and HLA; e.g., IDCOREXT (Progenika 
Biopharma, S.A., Spain), IDHPAXT (Progenika 
Biopharma, S.A.) and LABType® SSO (One Lambda, Inc., 
CA, USA) for commercially available blood group, HPA, 
and HLA typing kits, respectively.

Polymerase chain reaction‑Sequence‑based typing

The PCR‑SBT technique is considered as the most accurate 
molecular technique as it shows the actual sequence of 
nucleotides in the region of interest. In SBT, the nucleotide 

[Downloaded free from http://www.ijpvmjournal.net on Wednesday, May 23, 2018, IP: 80.191.140.51]



Mohamed Saleh, et al.: Transfusion and genetics

International Journal of Preventive Medicine 2018, 9: 458

sequences carried by an individual are determined after 
locus‑specific PCR amplification and purification. The 
purified PCR products are then sequenced by capillary 
electrophoresis using an automated DNA sequencer such as 
3130XL Genetic Analyzer (Life Technologies).

Future Directions of Transfusion Medicine
The future of transfusion medicine is envisaged to be 
exciting and promising. Modern and advanced technologies 
are predicted to replace and/or complement the current 
standard testing regimes. For instance, developments in 
the field of molecular biology and genetics have already 
produced great benefits for many branches of clinical 
practice, including transfusion medicine. The molecular 
bases of the genes coding for transfusion markers have 
been elucidated and this has allowed the development 
applications of various new molecular techniques for donor 
and recipient matching. This information can now be 
coupled with the wider availability of cutting‑edge tools, 
such as the next‑generation sequencing, and will help give 
improved insights into the many and varied classes of 
clinically relevant transfusion genes.[139‑142] This should lead 
to more accurate phenotypic matching of many transfusion 
determinants.

It has long been recognized that several genetic 
markers (e.g., ABO and HLA) determine both, 
transplantation and transfusion compatibility. Thus, a single 
and comprehensive registry covering all the significant 
transplantation and transfusion antigens is expected to 
become an efficient and important tool for providing safe 
blood and for searching for a matched organs/stem cells. 
However, donor recruitment can be challenging especially 
for multiethnic country.[116] For any admixed population, 
it is always important to ensure that all ethnic groups are 
adequately covered because the frequency of alleles may 
differ between groups. Further, first‑generation admixed 
people are a special case because they will have markers 
for two groups, and thus, there will always be a restricted 
number of suitable donors. Reducing the cost of testing 
makes it possible to screen larger numbers of people even 
if they are not making regular donations. One additional 
issue that may become significant in the future of blood 
transfusion might be the use of blood substitution products. 
Synthetic and bioengineered cellular alternatives to natural 
human blood have shown some initial promise, but it may 
still be some time before it becomes a routine reality.[143‑145] 
Until then, blood donations will remain as sacred gifts from 
altruistic individuals.
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