Dear Editor,

Exercise could be effective as preventative remedy against neurodegenerative diseases in older adults.[1] Exercise is neuroprotective because it has been shown to improve skills, reduce motor discrepancies, upsurge new neuron development, amend neurological damages, obstruct age-related neuronal harm, and prevent cognitive decline among older adults.[2] Physically active aged rats in comparison to inactive aged rats show enhanced three-dimensional learning, improved memory retention, and reduced age-related deteriorations in spontaneous activity.[3] Humans produce fewer insulin-like growth factor 1 (IGF-1) during normal aging process; IGF-1 plays a key role in the growth of cellular structures in a matured brain; however, exercise was found to increase the uptake of neurotropic IGF-1 from circulation directly to precise areas such as the hippocampus.[4] Regarding the aging brain, there is deterioration in the antioxidant protective mechanisms, which increases the susceptibility of the brain to harmful effects of oxidative stress. Moderate intensity physical exercise increases antioxidant levels in older adults, thereby improving brain function and reducing oxidative stress.[5] Since exercise can counteract neurodegeneration, depending on the type, intensity, and duration, it could be an effective preventive tool for older adults genetically susceptible to neurodegenerative disease such as Alzheimer’s and associated memory loss [Figure 1].

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Chidiebere Emmanuel Okechukwu
Physical Activity and Health Promotion, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Roma Tor Vergata, Via Montpellier, 1, 00133 Roma RM, Italy

Address for correspondence:
Dr. Chidiebere Emmanuel Okechukwu, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Roma Tor Vergata, Via Montpellier, 1, 00133 Roma RM, Italy.
E-mail: Chidiebereokechukwu2015@gmail.com

Received: 08 Aug 19 Accepted: 13 Aug 19
Published: 09 Oct 19
References


