
1© 2021 International Journal of Preventive Medicine | Published by Wolters Kluwer - Medknow

Introduction
Breast cancer is the most common cancer 
among women worldwide comprising 16% 
of all female cancers and it is estimated 
that 519,000 women died in 2004 because 
of breast cancer.[1] Although, the incidence 
of breast cancer in developed countries 
is more than developing countries, about 
50% of all diagnosis of breast cancer[2] 
and majority  (69%) of all breast cancer 
deaths occur in developing countries.[2] The 
incidence rate of breast cancer is rising in 
Iran too. Based on a review of published 
articles from January 1998 to December 
2005, the incidence rate of breast cancer 
was reported as 22/100,000 in Iran. About 
72% of the breast cancers diagnosed 
included a tumor over  2  cm.[3‑5] Most 
patients present with an advanced stage of 
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Abstract
Background: Recurrent event data arise frequently in longitudinal medical studies. In many 
situations, there are a large portion of patients without any recurrences, manifesting the “zero‑inflated” 
nature of the data. Moreover, there often exists a terminal event which may be correlated with 
the recurrent events. The goal of this study is to extend the application of joint frailty model to 
identify the prognostic factors associated with curing in patients with breast cancer. Methods: As a 
prospective study, medical records of women who had been attended to Cancer Research Center, 
Shahid Beheshti University of Medical Sciences from January 1998 to February 2016 were 
reviewed. Finally, after an initial review of medical records, 711 patients were included in the study 
and analyzed. A  checklist that included items drawn from the demographic background of patients 
was provided in the study. Two joint frailty models for zero‑inflated recurrent events, combining a 
logistic model for “structural zero” status  (Yes/No) and a joint frailty proportional hazards model 
for recurrent and terminal event times were performed to identify factors associated with BCS. 
Results: The mean age of patients was 38.2  years. The numbers of subjects with 1, 2, 3, and 4 
recurrent events were 392, 207, 97, and 15, respectively. The median follow‑up time was 6.87 years. 
There were 137  (19.2%) deaths from cancer during the follow‑up. Among the 574  patients who 
were censored, 418 had no tumor recurrence. Thus, there may exist a large portion of “cured” 
subjects. We can see that the radiation  (OR  =  6.02, CI =  (3.87, 8.61)) and tumor size interaction 
with radiation (OR = 1.065, CI = (1.002–1.26)) were significant in the cure model (P < 0.05) which 
means that patients with smaller tumor sizes were more likely to be cured by radiation therapy. 
Conclusions: Our proposed models can help investigators to evaluate which treatment will result 
in a higher fraction of cured subjects. This is usually an important research question in biomedical 
studies.
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the disease are younger than the patients in 
Western countries.[6]

Breast cancer can be detected at early stages 
and it has been shown that if breast cancer 
discovered early, it can often be cured.

In many situations, a substantial portion of 
subjects has no recurrent events. i.e.,  we 
have zero‑inflated recurrent event data. 
Zero‑inflated models have been proposed 
for many types of data, e.g.,  continuous[7] 
and count data.[8]

In these models, a portion of the data has 
an outcome of Y  =  0 with a probability 
P, while the remaining subjects have a 
specific distribution hence, zero values 
can come from either the “structural zero” 
or from  (“random zero”). These models 
can be classified as special cases of finite 
mixture models of two distributions.[9] It 
is possible that we observe zero recurrent 
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events for some subjects. Clinically, it is an extension of 
cure models for single event data.[10] For a cured case, 
a zero means that none of the events of interest occurs, 
which maps to waiting until infinity. For a noncured case, 
the event of interest will occur eventually if the follow‑up 
time is long enough. Although given a finite maximum of 
follow‑up, we may not observe its occurrence, i.e.  their 
follow‑up is stopped before the occurrence of the first 
event.[11] For a subject who has no events being observed, 
we cannot determine whether he is “cured” or “not cured.” 
However, the aforementioned cure models can provide an 
estimate of the probability of “cure”. By doing this, we 
can identify the treatment that results in a high proportion 
of “cured” subjects, and make the distinction between 
these two situations. More recently, Rondeau extended 
the “cure” model to recurrent events in the frailty model 
framework.[12]

On the other hand, there is an increasing interest in the 
joint analysis of recurrent and terminal events, e.g.,  death, 
as the recurrent and terminal events are often correlated. 
Other related work includes Ghosh and Lin  (2000), Ye 
et  al.  (2007), Huang and Liu  (2007), Liu and Huang 
(2008, 2009).[13‑17] As many of these articles showed that 
ignoring the informative terminal events could lead to 
biased estimates and there may be different impacts of 
“cure” on recurrent events.[18] Thus, it is important to 
consider recurrent and terminal events in the “cure” model 
framework.[19] Accordingly, our purpose in this study was 
to extend the applications of joint frailty model to identify 
the prognostic factors associated with curing in patients 
with breast cancer

Methods
Study design and participants

This prospective cohort study was conducted at the 
Shahid Beheshti Breast Cancer Research Center, using 
medical records. Eligibility criteria required subjects to be 
female; the follow‑up period was at least 18  years after 
initial surgery from January 1998 until February 2016. In 
this follow‑up period, we identified 711 recurrent breast 
cancers and included them in the current study. Length of 
follow‑up was not considered as inclusion criteria. Based 
on the time protocol of the Cancer Research Center, the 
patient’s information was reviewed and updated. Criteria 
for entering each patient in the study: All patients with a 
definite diagnosis of breast cancer who were followed up at 
Shohada Tajrish Hospital for at least 6 months after surgery. 
Exit criteria in this study were including incomplete 
information for each patient that these observations were 
made due to a defect in medical records and patient 
pathology reports. Moreover, patients who have been 
followed up for up to 5  months and variables that overlap 
with the results of the research were removed. Patients 
from the time of breast‑conserving surgery were considered 
at risk of recurrence or death.

All procedures performed in the study were in accordance 
with the ethical standards of the institutional ethics 
committee approval from the medical science of Tarbiat 
Modares University. The current study was extracted from 
a Ph.D. thesis, which was checked and approved by the 
Ethics Committee of the Tarbiat Modares University of 
Medical Sciences (IR.TMU.PHNS.REC.1396.91).

Variables assessment

Data on the original breast cancer  (diagnosis date, surgery 
type, tumor stage, the number of involved lymph nodes 
tumor grade, family history, and treatment) were obtained 
and confirmed via medical records. Reported breast cancer 
recurrences or new primary breast cancers diagnosed after 
study enrollment were adjudicated by breast oncologist. 
Recurrent cancers were classified as any type of recurrence: 
local/regional or distant metastasis and patients with no 
recurrence. Follow‑up time was censored at the time of 
death  (if not from breast cancer), at the last documented 
staff contact date, or at study completion (Feb 1, 2016)

Statistical analysis

To examine modeling recurrent event data, we fitted the 
frailty proportional hazards model that is specified as

λi (t|νi) = λ0(t) exp (βTZi + νi)

Where, β is the regression coefficient, λ0(u) is the baseline 
hazard function. When there exist a high portion of zero 
events, there may be patients who have no probability to 
experience the events, or they are or “cured” denote by 
A  =  1 for “cured,” and A  =  2 otherwise  (“not cured”). 
Notably, subjects with zero recurrent events could fall 
in either class. A  cure frailty model was proposed by 
Rondeau.[12]

In part I, a logistic model is used to describe the probability 
of cure, namely pi = P (Ai = 1):

logit (pi) = αTZi

Part  II is a frailty proportional hazards model for the 
recurrent event among those “not cured”

λi (t|νi, Ai = 2) = λ0(t) exp(βTZi + νi)

Also, there exists a terminal event  (death duo cancer) 
correlated with recurrences, for patients who not cured, the 
hazard for death is:

h (t|νi, Ai = 2) = h0(t) exp(ηTZi + νi)

By combining the above equations, we have a joint model 
of recurrence and survival with a cure fraction. A  “cured 
subject cannot experience any recurrence, nor death due to 
the disease and death due to other causes will be considered 
as censoring.

In this article, we present two zero‑inflated models for the 
recurrent event data with a large portion of zero events, 
both models have three parts:  (1) a logistic model for 
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“cure” which comes from those patients with no probability 
to experience the relapses;  (2) a frailty proportional hazard 
model for the recurrent events of other subjects who are not 
cured; and  (3) a Cox model for death with shared frailty 
from the recurrent event model, clinically, on whether 
there is “cure” for the terminal event  (death). The analysis 
was performed using R software  (version  10.3.2), and the 
estimation has been implemented in Proc NLMIXED of 
SAS software.

Results
Table  1 gives demographic, medical, and treatment 
characteristics of a total of 711  patients receiving surgery 
to remove tumors as the study sample. Patient’s diagnosis 
age in this study was between 22 to 84  years with mean 
and standard deviation 47.84, 11.75, respectively. The 
most prevalence of stage tumors and grade were 49.1% 
and 55.8% in patients with stage tumor and grade  II, 
respectively. Among all of the study samples, 68.1% have 
no family history. Patients may also receive adjuvant 
treatments such as chemotherapy and/or radiotherapy. 
Regarding treatment, 64% of women underwent a BSC 
(the remainder underwent a mastectomy radiation therapy), 
96% received adjuvant chemotherapy. To find out the effect 
of these adjuvant treatments on tumor recurrences, two 
types of recurrences were recorded: 138 local recurrences, 
413 distant recurrences, and 332  (49%) patients had no 
recurrence, demonstrating the zero‑inflated nature of the 
data. The median follow‑up time was 5.96  years. The 

numbers of patients with 1, 2, 3, and 4 recurrences were 
183, 118, 39, and 5, respectively.

There were 273  (39%) deaths from cancer. Among the 
407  patients who were censored, 308 had no tumor 
recurrence, illustrating a large portion of “cured” subjects 
in the dataset, who had no recurrences and did not die 
from cancer. Then this joint model was applied. Covariates, 
such as chemotherapy  (Yes/No), radiotherapy  (Yes/No), 
age at baseline, and the maximum tumor size at baseline 
were included in all three models. We also considered 
interactions between adjuvant treatments  (chemotherapy or 
radiation) in these models. As a result, only radiation and 
tumor size interaction was significant in the logistic cure 
model  (2). We included this interaction term in all three 
sub‑models. The estimation results are shown in Table 2.

The interaction of radiation and tumor size was significant 
in the cure model  (P  =  0.005). Radiation therapy was 
obtained as a more effective treatment for patients with 
smaller tumor sizes; we calculated the radiation effect on 
the ORs of “cure” for different tumor sizes.

The ORs of radiation effect were 3.73, 1.96, and 0.62 at 
5, 10, and 20  cm, respectively, i.e.  when the tumor size 
was large, the radiation decrease the cure probability, 
However, the chemotherapy did not have a significant 
effect on the cure  (P  =  0.13). For not cured patients, the 
interaction of radiation and tumor size was not significant. 
And only the main effect of tumor size was significant 
on tumor recurrences and death. Patients with larger 
tumors were more likely to have disease recurrences 
HR  =  exp  (0.048) = 1.049, P  =  0.008), as well as higher 
mortality rates  (HR  =  exp  (0.059) =1.061, P  =  0.006). 
We also fit a joint model without cure fraction for tumor 
recurrences and death, Table  2. However, the interaction 
between tumor size and radiation was significant on both 
recurrent and death in this reduced model. But the sign of 
these effects were different from those in another model. As 
aresult, not cured patients would not benefit from radiation 
therapy. Hence, after identifying patients to be cured more 
likely by radiation by applying a cure model, we would not 
use radiation therapy to those not likely to be cured.

The estimate of frailty variance in the model with a cure 
fraction was smaller than that in the reduced model. This 
suggests that the logistic cure model alone effectively 
captured the heterogeneity. As a result, there was much less 
variation in recurrent events for those no cured patients.

Discussion
In this paper, we presented two joint frailty models for 
zero‑inflated recurrent and survival. Our proposed models 
can help investigators to evaluate which treatment will 
result in a higher fraction of cured subjects. This is usually 
an important research question in biomedical studies. The 
“cure” component in the proposed models also helps explain 
a large portion of heterogeneity among study subjects. 

Table 1: Frequency distribution of characteristics in 
patients with breast cancer

n (%)ModalitiesVariable
383 (68.1)NoFamily history
122 (15.2)First degree
137 (16.7)Second‑degree
419 (64)BCSSurgery
223 (36)MRM

114 (12.9)IStage
328 (49.1)II
221 (35.4)III
13 (2.6)IIII
97 (10.8)IGrade
321 (55.8)II
214 (33.3)III
610 (96.5)YesChemotherapy
89 (3.5)No

313 (33.1)0The number of 
involved lymph 
nodes

227 (37.1)1‑3
135 (21.9)3‑10
68 (7.9)>10
40 (2.9)Without hormone therapyHormone therapy

397 (83.6)Tamoxifen
131 (7.9)Letrozole
84 (5.6)Other hormonal treatments
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Accordingly, this model can provide more precise analysis 
and offer in‑depth insight. For example, we detected a large 
fraction of cured subjects in this data set. In the breast 
cancer study, chemotherapy had no significant effect while 
radiation therapy could lead to a higher probability of cure 
for small tumor size, the proposed model should be applied 
when there exist a large fraction of zero recurrent events. 
Furthermore, we present an estimation method which can 
be conveniently implemented in SAS Proc NLMIXED. 
This model can be extended in different directions.[20] 
Firstly, we can use other frailty distribution, e.g., Gamma.

Secondly, we can model multiple types of recurrent events 
separately, e.g.,  local and distant recurrences with two 
correlated zero‑inflated frailty models. Lastly, there may 
exist nonlinear or time‑varying covariate effects in the 
recurrent or terminal event models, nonparametric methods 
can be used to capture these effects.

One key advantage of this proposed approach is that 
different covariate effects can be assessed by the two parts 
of recurrence hazard functions or death hazard function, 
these covariates can be time‑dependent or independent. 
In addition, they also provide information on whether 
one or both types of recurrences can be used as substitute 
endpoints for overall survival.[21,22] We noticed that 
locoregional relapses and death are related events. We did 
the same joint analysis with distant metastasis and death 
and we conclude that these two events are also associated. 
We may conclude that if we omit to consider the distant 
metastasis events Convergence of the model could be hard 

to obtain in data with few events. However, convergence 
could be reached when the number of parameters to 
estimate decrease.[23‑26] This study gives estimates of 
incidence and mortality rates in epidemiology, which are 
meaningful for clinicians. In analyses of the natural history 
of cancer, there is great interest in a dynamic prediction 
of death, that is, in the computation of the predictive 
distribution of death at a certain moment of time, given the 
history of events (local or distant relapses) and covariates 
until that moment.[27] As the strength of this study, the 
results obtained from the proposed model in this study are 
highly valued due to controlling the zero events by handling 
them, unlike other survival models that considered them as 
a censor. These predictions and a measure of their accuracy 
are in progress, they may provide valuable insight for future 
research. Notably, some limitations of this study should be 
considered. First, these results should be considered with 
caution, given the small number of recurrent events. It may 
be as a limitation for this study. Incomplete information of 
some of these patients was another limitation of our study.

Conclusions
In conclusion, in this sample of breast cancer women, this 
model can be extended in several directions. Firstly, we 
can model multiple types of recurrent events separately, 
e.g.,  local and distant recurrences in this study, with two 
correlated zero‑inflated frailty models. Secondly, there may 
exist nonlinear or time‑varying covariate effects in the 
recurrent or terminal event models, nonparametric methods 
can be used to capture these effects. In the other hand, 

Table 2: Joint frailty models for zero‑inflated recurrent events along with death
95% CINo cure fraction95% CIProposed modelParameter

SEHR*/OREstSEHR/OR*Est
Cure logistic model

0.483‑‑0.645Intercept
0.47,1.920.0291.017*0.017Tumor size Ref (<20)
3.87,8.610.756.02*1.796Radiation Ref (No radiation)
0.18,2.170.3040.702*‑0.353Chemo Ref (No Chemo)
0.79,2.530.0630.941*‑0.061Age at diagnosis
0.38,0940.0420.805*‑0.216Size * Radiation

Recurrent events
0.21,1.870.0171.0620.0610.23,0.870.0170.650.048Tumor size1 Ref (<20)
0.06,0.410.1620.22‑1.490.83,2.060.3811.0860.083Radiation Ref (No radiation)
0.54,1.830.1931.0550.0540.26,2.470.1470.917‑0.169Chemo Ref (No Chemo)
0.71,1.680.0291.0120.0120.34,2.910.0960.983‑0.017Age at diagnosis
1.002,1.090.0331.050.0490.24,1.830.0630.992‑0.008Size * Radiation

‑0.3842.941‑0.183‑0.751θ P=0.001
Cancer death

0.48,2.140.0951.0410.0411.03,2.130.0161.850.082Tumor size Ref (<20)
0.03,0.640.4770.27‑1.3070.68,2.730.3280.9240.079‑Radiation Ref (No radiation)
0.86,1.930.2111.140.1390.39,2.950.1690.911‑0.093Chemo Ref (No Chemo)
069,2.140.0611.210.1940.34,1.080.0680.931‑0.071Age at diagnosis
1.01,1.830.0351.150.1410.53,0.990.0280.944‑0.006Size * Radiation

Est is the parameter estimates; SE is the standard error of the parameter estimate. OR was reported for cure logistic model/HR was reported 
for Cox model. 1tumor size <20
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our findings provide a deep insight into challenging the 
clinician to evaluate which treatment will result in a higher 
fraction of cured subjects. This is usually an important 
research question in biomedical studies.
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