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Introduction
The most important decision that every 
mammalian live‑cell must make is 
whether to continue cell division or to 
exit the cell cycle and reach a quiescent 
state. The cell cycle is divided into 
four phases, G1, G2, S, and M phase. 
The mammalian cell cycle is controlled 
and governed by the kinase complexes 
including cyclin, as a regulatory subunit, 
and the cyclin‑dependent kinase (CDK), 
as a catalytic subunit together named 
cyclin‑CDK complexes. The kinases are 
very essential for the accuracy of DNA 
replication and chromosome segregation. 
They are activated by phosphorylation/
dephosphorylation events and binding to 
regulatory subunits, cyclins. The activity 
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Abstract
Background: The cell cycle is divided into four phases, G1, G2, S, and M phase. The mammalian 
cell cycle is controlled and governed by the kinase complexes including cyclin and the 
cyclin‑dependent kinase (CDK), cyclin‑CDK complexes. The activity of the complexes is regulated 
by cyclin‑dependent kinase inhibitors (CDKIs), the INK4, and the CDK interacting protein/kinase 
inhibitory protein (CIP/KIP) families. Promoter hypermethylation and histone deacetylation of 
CDKIs have been reported in several cancers. These changes can be reversed by DNA demethylating 
agents, such as decitabine, 5‑Aza‑2′‑deoxycytidine (5‑Aza‑CdR), and histone deacetylase 
inhibitors (HDACIs), such as trichostatin A. Previously, we reported the effect of 5‑Aza‑CdR and 
trichostatin A (TSA) on hepatocellular carcinoma (HCC). The present study aimed to investigate the 
effect of 5‑Aza‑CdR in comparison to and in combination with trichostatin A on p16INK4a, p14ARF, 
p15INK4b genes expression, cell growth inhibition and apoptosis induction in colon cancer Caco‑2 
cell line. Methods: The Caco‑2 cells were cultured and treated with 5‑Aza‑CdR and TSA (alone 
and combined). The cell viability, apoptosis, and relative gene expression were determined by 
MTT assay, flow cytometry, and real‑time quantitative reverse transcription‑polymerase chain 
reaction (qRT‑PCR), respectively. Results: Both compounds inhibited cell growth, induced apoptosis, 
and up‑regulated the p16INK4a, p14ARF, p15INK4b gene significantly. The TSA had a more 
significant effect in comparison to 5‑Aza‑CdR. Furthermore, maximal apoptosis and up‑regulation 
were observed with combined treatment. Conclusions: our finding indicated that 5‑Aza‑CdR and 
TSA can epigenetically re‑activate the p16INK4a, p14ARF, p15INK4b gene resulting in cell growth 
inhibition and apoptosis induction in colon cancer.
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of complexes, cyclin‑CDK complexes, 
is regulated at several levels including 
phosphorylation of CDK subunit, the 
availability of the cyclin subunit, inhibitory 
molecules named CDK inhibitors (CKIs). 
In mammals, these inhibitors are divided 
into two groups, the INK4 and the CDK 
interacting protein/kinase inhibitory 
protein (CIP/KIP) families.[1] The INK4 
family inhibits CDK4/6 and comprises 
p16INK4a, p14ARF, p15INK4b. The 
CIP/KIP family includes p21CIP1, 
p27KIP1, and p57KIP2.[2,3] Promoter 
hypermethylation of INK4[4] and CIP/KIP 
family,[5] as CKIs, have been reported in 
several cancers. INK4 family (p14ARF, 
p15INK4b, and p16INK4a genes) located 
on chromosome 9p21 is hypermethylated 
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in various cancers.[6] It has been reported that 
overexpression of DNA methyltransferase (DNMTs) 
results in promoter hypermethylation of the INK4 family 
leads to cancer induction in several tissues such as liver 
and lung.[7‑9] The role of methylation in cancer induction 
and tumorigenesis was inferred from epigenetic studies of 
normal and neoplastic tissues. In proliferating cells, DNA 
hypermethylation is critically dependent on the continued 
expression of DNMTs.[10] The enzymes involved in DNA 
methylation are DNMTs, which catalyze the transfer of 
a methyl group from S‐adenosyl‐methionine to cytosine 
residues to form 5‐methylcytosine, a modified base found 
at CpG sites of the cellular genome. This alteration can 
suppress the expression of tumor suppressor genes (TSGs) 
such as the INK4 family. Overexpression of TSGs plays a 
significant role in the induction and development of many 
cancers comprising gastric cancer,[11] ovarian cancer,[12] 
and colorectal cancers.[13‑15] DNA demethylating agent 
decitabine, 5‑Aza‑2′‑deoxycytidine (5‑Aza‑CdR), can 
revert hypermethylation of INK4 and CIP/KIP genes in 
colorectal cancer.[16‑18] Histone deacetylases (HDACs) 
regulate biological processes by deacetylation of 
histones and non‑histone proteins. The overexpression 
of HDACs has been demonstrated in numerous cancer 
types.[19] The histone deacetylase inhibitors (HDACIs) 
reactivate the INK4 and CIP/CIP gene families causing 
G1 phase arrest. It has been reported that HDACI 
trichostatin A (TSA) treatment induces the expression 
of INK4 and CIP/CIP genes in various solid and 
hematologic cancers.[20‑22] [Previously, we reported 
the effect of 5‑Aza‑CdR and TSA on hepatocellular 
carcinoma (HCC).[23,24]

The present study aimed to investigate the effect of 
5‑Aza‑CdR in comparison to and in combination with TSA 
on p16INK4a, p14ARF, p15INK4b genes expression, cell 
growth inhibition and apoptosis induction in colon cancer 
Caco‑2 cell line.

Methods
Materials

The human colon cancer Caco‑2 cell line was provided 
from the National Cell Bank of Iran‑Pasteur Institute 
and maintained in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with fetal bovine serum 
10% and antibiotics in a humidified atmosphere of 5% 
CO2 in air at 37°C.

5‑Aza‑CdR and TSA were purchased from Sigma (St. Louis, 
MO, USA) and dissolved in dimethyl sulfoxide (DMSO) to 
make a master stock solution.

Further concentration was obtained by diluting the provided 
solution. Other compounds including, antibiotics, DMSO, 
3‑[4, 5‑dimethyl‑2‑thiazolyl]‑2, 5‑diphenyl‑2H‑tetrazolium 
bromide (MTT), phosphate‑buffered saline (PBS), DMEM, 
trypsin‑EDTA, Annexin‑V‑(FITC), propidium iodide (PI), 

were purchased from Sigma. Total RNA extraction 
kit (TRIZOL reagent) and real‑time polymerase chain 
reaction (RT‑PCR) kits (qPCR MasterMix Plus for SYBR 
Green I dNTP) were obtained from Applied Biosystems 
Inc. (Foster, CA, USA).

Cell culture and cell viability

This work was approved in the Ethics Committee of 
Jahrom University of Medical science with a code number 
of IR.JUMS.REC.1398.023. To perform the present study, 
the Caco‑2 cells were cultured in DMEM supplemented 
with 10% FBS, sodium pyruvate, antibiotics, and sodium 
bicarbonate at 37°C in 5% CO2 overnight and then seeded 
into 96‑well plates (5 × 105 cells per well).

After 24 h of culture, the growth medium was removed 
and experimental medium containing various doses of 
5‑Aza‑CdR (0, 1, 2.5, 5, 10, and 20 µm) and TSA (0, 
0.5, 1, 2.5, 5, and 10 µm) was added. The control groups 
received DMSO only, at a concentration of 0.05%. The 
cells were treated with 5‑Aza‑CdR and TSA for 24 and 
48 h. Subsequently, the cell viability was evaluated by 
MTT assay according to standard protocols, a quantitative 
colorimetric assay based on the living cell’s ability, 
to determine cell growth in the treated and untreated 
control groups. This technique is based on the activity 
of cellular enzymes which reduces the tetrazolium salt 
MTT resulting in a dark‑blue formazan product. The 
product is dissolvable in DMSO through which the 
number of viable cells can be indicated. Therefore, the 
MTT solution was added to each well for 4 h at 37°C, 
the MTT solution was removed, DMSO was added and 
shaken for 10 min to dissolve all of the crystals. Finally, 
the optical density was detected by a microplate reader at 
a wavelength of 570 nm. Each experiment was repeated 
three times (triplicates).

Cell apoptosis assay

For apoptosis determination, the Caco‑2 cells were cultured 
at a density of 4 × 105 cells/well and incubated overnight 
without treatment. Subsequently, the Caco‑2 cells were 
treated with 5‑Aza‑CdR (5 µm) and TSA (2.5 µm), as 
alone and combined, for 24 and 48 h and then the culture 
medium was removed and the cells were harvested by 
trypsinization, washed with cold PBS, and resuspended in 
Binding buffer (1×).

To determine apoptotic cells, Annexin‑V‑(FITC) and PI 
were used according to the protocol and the apoptotic 
cells were counted by FACScan flow cytometry (Becton 
Dickinson, Heidelberg, Germany).

Real‑time quantitative reverse transcription‑polymerase

Chain reaction (qRT‑PCR)

To determine the relative expression level of p16INK4a, 
p14ARF, p15INK4b gene, qRT‑PCR was done. The 
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manner (P < 0.001). Furthermore, combined treatment 
h alone ad a more significant effect in comparison to 
each agent (P < 0.001), Figure 4. Besides, TSA had 
a more significant effect in comparison to 5‑Aza‑CdR 
(P < 0.001). Besides maximal apoptosis was seen in 
the combined treatment groups after 48 h of treatment 
(P < 0.001), Figure 5.

Result of determination of genes expression

The result of RT‑PCR analysis demonstrated that treatment 
with 5‑Aza‑CdR (5 µm) and TSA (2.5 µm), as alone 
and combined, at 24 and 48 h up‑regulated p16INK4a, 
p14ARF, p15INK4b significantly (P < 0.001), Table 2 and 
Figures 6, 7. Finally, TSA had a more significant effect on 
gene expression in comparison to 5‑Aza‑CdR (P < 0.001). 
Besides maximal up‑regulation was seen in the combined 
treatment groups after 24 and 48 h of treatment as indicated 
in Figure 8.

Discussion
Epigenetic alterations such as histone acetylation and DNA 
methylation act to regulate gene expression in normal 
mammalian proliferating cells. DNA hypermethylation 
plays a major role in tumorigenesis through transcriptional 
silencing of TSGs. Other modifications include histone 
deacetylation affect local compaction of chromatin structure 
leads to TSGs silencing.[28]

Recently, it has become clear that the silencing of 
cancer‑related TSGs INK4 is not exclusively a result 
of mutations or deletions, but it can also be because of 
histone deacetylation and DNA hypermethylation. These 
changes, deacetylation, and hypermethylation have been 
reported in several cancers.[29‑32] Histone acetylation and 
DNA methylation of the TSGs such as p16 and p21 
can be modified with TSA and 5‑Aza‑CdR in colorectal 
cancer.[33‑35]

In the current study, we reported that 5‑Aza‑CdR 
and TSA can inhibit Caco‑2 cell growth and induce 
apoptosis. Besides, we decided to evaluate the molecular 

Figure 1: In‑vitro effects of the various concentrations of 5‑Aza‑CdR and 
TSA on colon cancer Caco‑2 cell viability (24 and 48 h). The first column 
of each group belongs to the control group. Values are means of three 
experiments in triplicate. Asterisks (*) demonstrate significant differences 
between treated and untreated control groups

Caco‑2 cells were treated with 5‑Aza‑CdR (5 µm) and 
TSA (2.5 µm), as alone and combined, for different 
periods (24 and 48 h), based on IC5o values, and total 
RNA from the untreated and treated Caco‑2 cells was 
extracted using the RNeasy kit (Qiagen, Valencia, CA) 
according to the manufacturer protocol and treated by 
RNase‑free DNase (Qiagen) to eliminate the genomic 
DNA.

The concentration of RNA was determined using a 
BioPhotometer (Biowave II Germany). Total RNA (100 ng) 
was reverse‑transcribed to complementary DNA (cDNA) 
by using the RevertAid First Strand cDNA Synthesis 
Kit (Fermentas, K1622 for 100 reactions), according to the 
protocol.

Real‑time RT‑PCR was performed by the Maxima SYBR 
Green RoxqPCR master mix kit (Fermentas). The primer 
sequences were obtained from the published article in 
which their sequences are indicated in Table 1. GAPDH 
was used as an endogenous control. Data were analyzed 
using the comparative Ct (∆∆ct) method.

Results
Result of cell viability by the MTT assay

The viability of Caco‑2 cells treated with various 
concentrations of 5‑Aza‑CdR and TSA was measured 
by MTT assay. As shown in Figure 1, both compounds 
induced significant cell growth inhibition with all 
experimental concentrations as a dose‑ and time‑dependent 
manner (P < 0.001). IC50 values were obtained with 
approximately 5 and 2.5 µm for 5‑Aza‑CdR and TSA, 
respectively.

Result of cell apoptosis assay

To determine whether 5‑Aza‑CdR (5 µm) and 
TSA (2.5 µm) could induce apoptosis, the Caco‑2 cells 
were stained using annexin‑V‑(FITC) and PI. 
As demonstrated in Figures 2 and 3, significant 
differences were observed by comparing the amounts 
of the treated cells to the untreated cells. Both 
compounds induced apoptosis in a time‑dependent 

Table 1: The primer sequences of p16INK4a, p14ARF, 
p15INK4b genes

Primer Primer sequences (5′ to 3′) Reference
p14ARF

Forward
Reverse

GTGGGTTTTAGTTTGTAGTT
AAACCTTTCCTACCTAATCT

[25]

p15INK4b
Forward
Reverse

AAGCTGAGCCCAGGT CTCCTA
CCACCGTTGGCCGTAAACT

[26]

p16INK4a
Forward
Reverse

CCCGCTTTCGTAGTTTTCAT
TTATTTGAGCTTTGGTTCTG

[27]
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mechanisms of this effect. In the case of the pathway, 
we assessed the effect of compounds (alone and 

combined) on p16INK4a, p14ARF, p15INK4b genes 
expression and found that both agents up‑regulated 

Table 2: The relative expression level of p16INK4a, p14ARF, p15INK4b genes
Cell line Gene Drug Dose (µm) Duration (h) Expression P
Caco‑2 p14ARF 5‑Aza‑CdR 5 µm 24 2.6 0.001
Caco‑2 p14ARF 5‑Aza‑CdR 5 µm 48 2.9 0.001
Caco‑2 p15INK4b 5‑Aza‑CdR 5 µm 24 2.4 0.001
Caco‑2 p15INK4b 5‑Aza‑CdR 5 µm 48 3 0.001
Caco‑2 p16INK4a 5‑Aza‑CdR 5 µm 24 2.5 0.001
Caco‑2 p16INK4a 5‑Aza‑CdR 5 µm 48 3.1 0.001
Caco‑2 p14ARF TSA 2.5 µm 24 2.9 0.001
Caco‑2 p14ARF TSA 2.5 µm 48 3.3 0.001
Caco‑2 p15INK4b TSA 2.5 µm 24 2.7 0.001
Caco‑2 p15INK4b TSA 2.5 µm 48 3 0.001
Caco‑2 p16INK4a TSA 2.5 µm 24 2.8 0.001
Caco‑2 p16INK4a TSA 2.5 µm 48 3.1 0.001
Caco‑2 p14ARF Combined 5 + 2.5 µm 24 3.2 0.001
Caco‑2 p14ARF Combined 5 + 2.5 µm 48 3.8 0.001
Caco‑2 p15INK4b Combined 5 + 2.5 µm 24 3.3 0.001
Caco‑2 p15INK4b Combined 5 + 2.5 µm 48 3.6 0.001
Caco‑2 p16INK4a Combined 5 + 2.5 µm 24 2.9 0.001
Caco‑2 p16INK4a Combined 5 + 2.5 µm 48 3.7 0.001

Figure 2: The apoptotic effect of 5‑Aza‑CdR (5 μm) on Caco‑2 cell versus control groups (24 and 48 h) evaluated by flow cytometric analysis. Results 
were obtained from three independent experiments and were expressed as mean ± standard error of the mean. Asterisks (*) demonstrate significant 
differences between treated and untreated control groups. A: 5‑Aza‑CdR (5 μm) treated cells at 24h, B: 5‑Aza‑CdR (5 μm) treated cells at 48h, C: Control 
group, D: Apoptotic graph

dc

ba
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the genes significantly. Furthermore, TSA indicated a 
more significant effect in comparison to 5‑Aza‑CdR. 
Additionally, maximum apoptosis and gene expression 
were seen with combined treatment.

Similar pathways have been reported by other researchers. 
It has been shown that Aza‑CdR can restore p14ARF in 
colon cancer RKO cell,[36] p16 in colon cancer HCT116, 
SW480, L174 T, Co115 cells,[37] and p15 in RKO human 
colorectal cell.[38] The same molecular mechanism has been 
indicated in other cancers including human gastric cancer 
cells,[39,40] human lung cancer cells,[41] and ovarian cancer.[42] 
Inconsistent with our result, it has been demonstrated that 
histone deacetylase inhibitor TSA activates the p15INK4b 
gene in human colorectal carcinoma cell line HCT116.[22] 
It should be noted that the INK4 family is suppressed by 
DNMTs overexpression. Aberrant DNA methylation 
is catalyzed by DNMTs. Thus, abnormal variations of 
these enzymes can contribute to tumorigenesis. The 
DNMTs are known to date include DNMT1, DNMT2, 
DNMT3a, DNMT3b, and DNMT3L. In colorectal cancer, 
the over‑activity of DNMT3a and DNMT3b leads to 
cancer induction.[43] Therefore, methylated inactivation of 
the INK4 pathway is one of the mechanisms of cancer 

induction in colon cancer. It could be restored by DNMTIs 
such as 5‑Aza‑CdR.

Furthermore, the HDAC family has emerged as an 
important regulator of colorectal cell transformation 
and maturation. They play a major role in cancer 
induction and development. These enzymes remove 
the acetyl groups resulting in the compacted chromatin 
and cell cycle regulator gene silencing.[44] The 
overexpression of HDACs represses transcription 
of INK4 and CIP/KIP families such as p15INK4b 
and p21WAF1/CIP1, which in turn, induces cancer 
induction.[45] As a result, HDACIs can be a suitable 
choice for silenced TSGs reactivation.

In summary, 5‑Aza‑CdR and TSA can reactivate INK4 
genes by which induce apoptosis in colon cancer. They 
may play this role by inhibition of the activity of DNMTs 
and HDACs. We didn’t evaluate the effect of the mentioned 
compounds on the DNMTs and HDACs. Therefore, this 
assessment is recommended.

Conclusions
In conclusion, our finding indicated that DNA 

Figure 3: The apoptotic effect of TSA (2.5 μm) on Caco‑2 cell versus control groups (24 and 48 h) evaluated by flow cytometric analysis. Results were 
obtained from three independent experiments and were expressed as mean ± standard error of the mean. Asterisks (*) demonstrate significant differences 
between treated and untreated control groups. A: TSA (2.5 μm) treated cells at 24 h, B: TSA (2.5 μm) treated cells at 48h, C: Control group, D: Apoptotic graph

dc

ba
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demethylating agent 5‑Aza‑CdR and histone deacetylase 
inhibitor TSA can epigenetically re‑activate the 
p16INK4a, p14ARF, p15INK4b gene resulting in cell 
growth inhibition and apoptosis induction in colon 
cancer. Thus, this result suggests a dependence of 
the p16INK4a, p14ARF, p15INK4b gene silencing 

through hypermethylation and histone deacetylation by 
a mechanism that involves the up‑regulation of DNA 
methyltransferases and histone deacetylases. Therefore, 
the evaluation of the effect of 5‑Aza‑CdR and TSA on 
these enzymes is recommended.
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Figure 5: The comparative apoptotic effects of 5‑Aza‑CdR (5 µm) and 
TSA (2.5 µm), as alone and combined, on Caco‑2 cell at 24 and 48 h. 
As shown above, the first column of each group belongs to the control 
group and the others belong to treated cells at 24 and 48 h. Asterisks (*) 
indicate significant differences between the treated and untreated 
control groups

Figure 4: The apoptotic effect of 5‑Aza‑CdR (5 μm) in combination with TSA (2.5 μm) on Caco‑2 cell versus control groups (24 and 48 h) investigated by 
flow cytometric analysis. Results were obtained from three independent experiments and were expressed as mean ± standard error of the mean. Asterisks 
(*) demonstrate significant differences between treated and untreated control groups. A: Combined, 5‑Aza‑CdR (5 μm) in combination with TSA (2.5 μm), 
treated cells at 24h, B: Combined, 5‑Aza‑CdR (5 μm) in combination with TSA (2.5 μm), treated cells at 24h, C: Control group, D: Apoptotic graph

dc

ba
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