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Introduction
The incidence of obesity and obesity‑related 
problems despite the considerable efforts 
of health care professionals is rising 
worldwide.[1] According to the World Health 
Organization’s report, the number of obese 
people is doubling over the last 35  years 
and more than 50 million children at age 
5 are obese.[2,3] The major explanation for 
the current trend is the overconsumption 
of high‑calorie foods and disrupted 
circadian rhythm. Epidemiological studies 
in the USA, Canada, and China have 
indicated that obesity incidence increases 
by the increment of the average amount 
of fat in the diet.[4,5] Reduction of the 
calorie intake without malnutrition is 
the common strategy against obesity 
but beyond that, since 1935 different 
studies introduce, CR as a nutritional 
gold standard for life extension.[6] Several 
different pathways have been suggested 
to play a role in CR’s mediated effects, 
including insulin growth factor‑1  [IGF‑1], 
Forkhead Box O  (FOXO), and mammalian 
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Abstract
Background: Calorie restriction  (CR) is known as a nutritional gold standard for life extension and 
different studies have shown that insulin‑like growth factor  (IGF1) reduction through CR may be 
involved in CR’s anti‑aging effects. Besides, time‑restricted‑feeding (TRF) is also highlighted due to more 
feasibility and positive health effects. We designed this study to compare the effects of CR and TRF on 
IGF1 and other metabolic parameters. Methods: Fifty‑two male Wistar rats (3 weeks old) were subjected 
to either a control (CON, n = 11) diet or high‑fat diet (HFD, n = 42) for 17 weeks. In the second phase 
of the study, the HFD group were divided into four groups  (n  =  9) 1) 30% CR, 2) Night Intermittent 
Fasting  (NIF, active phase), 3) day intermittent fasting  (DIF, rest phase), and 4) Ad‑Libitum  (AL) with 
a standard diet for 10  weeks. Blood samples were collected at the end of both phases. Results: HFD 
increased IGF1 and deteriorated lipid profiles, except for triglycerides (P: 0.018, 0.008.0.012, 0.032) but 
CR in these obese subjects could not lower the IGF1 level. HDL significantly decreased in DIF compared 
to CON and CR  (P; 0.001). Meanwhile, HOMA‑IR increased in DIF and was significant compared 
to CR  (P: 0.002). Serum glucose levels decreased in CR compared to all groups except for CON  (P: 
0.001). Conclusion: Data indicates the role of previous obesity on the effect of CR on the IGF1 level and 
highlights the effect of inappropriate time of food intake on HDL and APOA1.
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target of Rapamycin  (mTOR), which 
eventually retards the damaged molecules 
accumulation.[7]

Previously, some different rodent studies 
have shown that CR can reduce IGF1 
serum concentrations in rodents, and this 
multifaceted growth factor may be involved 
in CR’s anti‑aging and anti‑cancer effects.
[8] However, there is a controversy in 
human studies as a long term 25% calorie 
restriction  (CR) did not lead to a IGF1 
reduction while increased IGF binding1.[9] 
Several cellular and metabolic adaptations 
occur as a result of the IGF1 pathway 
suppression including upregulation of 
autophagic and apoptotic pathways, 
downregulation of growth pathways, 
increased resistance to multiple toxic 
agents, and increased genome stability.[9]

Moreover, due to the more feasibility and 
modulatory effects, intermittent fasting  (IF) 
is known as one of the important CR’s 
mimetics in weight loss as its primary 
outcome. It is noteworthy that, alternate 
day fasting is considered as if the protocol 
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in most studies; while time‑restricted feeding in dark/
light cycle  (similar to our protocol) is more practical and 
similar to human normal  life.[8] For example, 8‑week 
intermittent fasting specifically in the form of alternate‑day 
fasting‑induced body weight and fat mass lost specifically 
in obesity‑prone ones.[10] Studies suggest that chronic 
diseases such as diabetes and cardiovascular disease are 
also prevented by intermittent fasting, even when there is 
little or no overall decrease in calorie intake.[9] Considering 
that light/dark cycle regulates central circadian clock which 
this, in turn, modifies the absorption of food, glucose 
or lipid transport and small peptides, depending on the 
moment of the day.[4] The comparison of the different 
effects of CR and IF in light  (rest phase in rodent) and 
dark cycle  (activity phase in rodent) against nutritional 
challenges that predispose an organism to obesity and 
related metabolic problems have yet to be investigated. 
Accordingly, the purpose of this study is to investigate the 
effect of CR and time‑restricted feeding on IGF1 serum 
level and lipid profile in male Wister rats with previous 
obesity

Methods
Animals and diets

Iran University of Medical Sciences Ethics Committee 
approved the study protocol  ((ir.iums.rec. 0327‑26581) 
and a veterinarian regularly monitored the health status 
of the rats throughout the experiment. In the first phase, 
52 postweaning male Wistar rats  (three weeks old) were 
obtained from Pasteur Institute of Iran and were individually 
housed in cages at controlled temperature  (22  ±  2 C), 
and humidity  (50%) in a designated room under a 12‑h 
light‑dark cycle. In the accommodation period, the animals 
had free access to food and water. Then, the animals 
were divided into two groups, including control diet 
group (n  =  11) receiving standard chow  (18.8 MJ/kg with 
23.4% as protein, 4.5% as fat, and 72.1% as carbohydrate, 
Ralston‑Purina and other necessary nutrients for the growth 
of rats) and high‑fat diet  (n = 41) offering 60% of calories 
from milk/butter for 17  weeks. A  subsample from the 
HFD group was housed in metabolic cages to measure 
the rat food intake for the second phase of the study, 
and CRs evaluation. The experimental diets were freshly 
prepared every 3  days and were kept at 0–4°C to avoid 
any rancidity. After significantly increasing the HFD group 
weight  (12.5% higher body weight compared with the 
control group), the first phase of the study was completed. 
After an overnight food deprivation, a subsample from 
both groups  (n  =  6) was anesthetized by ketamine and 
xylazine, and blood samples were collected from the 
aortic vein. Blood samples were centrifuged  (1500  g, 
15  min at 4°C), the serum collected and stored at  −80°C 
for further analyses. In the second phase of the study, the 
HFD group was divided randomly into four groups  (each 
of 9): 1) CR, 2) Night Intermittent Fasting  (IFN), 3) day 

intermittent fasting (IFD), and 4) Ad‑Libitum  (AL). The 
second phase of the study continued with the control group 
and the four derivative groups from the high‑fat diet for 
10  weeks [Figure  1]. Under the time‑restricted feeding, 
rats were allowed to access the food between ZT 13  (one 
hour after light off) and ZT1  (1  h after light on) or vise 
versa  [Figure  1]. At the end of this stage, blood samples 
were taken in similar condition to the first phase.

Statistical analysis

The data are reported as mean  ±  SD. The statistical 
analyses were performed using SPSS software (2013‑ IBM 
SPSS Statistics for Windows, Version  22.0. Armonk NY: 
IBM Corp). The normality of the data distribution was 
checked through Kolmogorov–Smirnov test and Levene’s 
test was used to assume the equal variance of each group. 
In the first phase of the study, data were analyzed through 
independent t‑test or its nonparametric alternative, the 
Mann–Whitney test. In the second phase of the study 
and normal distribution of data, one‑way analysis of 
variance (ANOVA), followed by Tukey posthoc tests, were 
used to compare the results. Otherwise, the Kruskal–Wallis 
and posthoc Bonferroni test were used. P  values of  <0.05 
were considered significant.

Results
Day intermittent fasting leads to lower HDL and 
APOA1

The results of biochemical analyses are presented in 
Table  1. The increment of LDL/HDL ratio, cholesterol, 
and total cholesterol/HDL were observed over  17  weeks 
of a high‑fat diet, and there was no significant change in 
the APOB100/APOA1 ratio. Pair‑wise comparison in the 
second phase of the study showed that the HDL level 
was significantly lower in DIF  (rest phase) compared to 
CON and CR  (P: 0.0001), while there were no significant 
changes among other parameters. Moreover, APOA1 was 
lower in DIF compared to the others, which was significant 

Figure 1: Second phase dietary pattern
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among CR and DIF  (P: 0.012). CR increased HDL and 
APOA1 levels in comparison to the first phase, which was 
not seen in other groups (P: 0.002, 0.045).

Glucose metabolism and IGF1

A high‑fat diet leads to higher fasting blood glucose, though 
there was no significant change in HOMA‑  IR and serum 
insulin concentration in the first phase groups  (P: 0.37). 
Between‑group analyses in the second phase of the study 
showed a significantly lower fasting blood glucose in CR 
(except for CON), and higher HOMA‑IR in DIF (P: 0.0001, 
P: 0.002), which was significant compared to IFN. 
HOMA‑IR also increased in IFN and DIF compared to 
HFD  (P: 0.04, 0.004). The serum concentration of IGF1 
increased in response to a high‑fat diet and weight gain, 
while there were no significant changes in the second 
phase groups. Nevertheless, IGF1 increased in response 
to CR, compared to AL, and control food intake  (P: 0.46) 
[Table 1].

Discussion
CR is known as one of the most effective interventions 
against chronic diseases and a life‑extension protocol from 
yeast to primates.[11] IGF1 as a growth factor is highlighted 
in CR’s mediated benefits and plays an important role in 
cell differentiation, growth, and development. In some 
circumstances, this survival factor leads to higher cell 
proliferation, which may cause cancer and obesity, while 
in others acts as a cell protective agent and preserves 
myocytes and cardiomyocytes.[12,13] However, the exact 
mechanism of CR has not been recognized yet. Data from 
experimental and genetic studies have indicated that a 
higher level of IGF1 is correlated with reduced lifespan 
and CR can decrease the IGF1 level.[14,15] The first‑phase 
results indicated that the HFD group had a higher level of 
IGF1. Data on IGF1 and obesity are controversial.[7,9,16] It 
seems that they have a bilateral relationship, since higher 
food intake increases IGF1 in those with a low level of 
serum concentration, while on the other hand, higher levels 
of IGF1 increases SREBP, cholesterol, and adipocyte 
differentiation.[15,17,18] In contrast, it seems that CR can 
effectively reduce IGF1 and protect the organism against 
cancer and other age‑related diseases.[19,20] In the second 
phase of the study, no reduction was observed in the serum 
concentration of IGF1 following CR, while surprisingly a 
mild increment was observed in this group compared to 
AL  (not significant). Previously, Fontana et  al. reported 
that long‑term CR in a normal‑weight person did not lead 
to IGF1 reduction, due to a lack of significant changes in 
protein intake followed by mild CR.[7] Hence, it seems that 
a higher level of energy restriction can decrease the IGF1 
level and the involved mechanism in this kind of dietary 
approach differs in normal weight and obese subjects due 
to the disturbed insulin signaling tailored by obesity.[21] 
This is seen early after CR, as shown by decreased FBS 
and insulin resistance (compared to DIF).
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A high‑fat diet in the first phase of the study increased 
FBS significantly in the HFD group; however, the insulin 
concentration did not change significantly between groups. 
Fiorino reported that HFD started post‑weaning did not 
change serum insulin concentration. Besides, a conjugated 
linoleic acid‑rich diet  (higher butter consumption) may 
activate PPARγ, which can increase free fatty acids transfer 
to adipose tissue, which is accompanied by higher fat 
pad weight and lower insulin serum concentration.[22‑24] 
While in the CR period, higher Sirtuin may down‑regulate 
PPARγ to improve fat hydrolysis and positively regulate 
PPAR‑coactivator 1  (PGC1α) to coordinate the shift from 
glucose to fat oxidation.[25] Moreover, SIRT can enhance 
glucose‑induced insulin secretion by inhibiting uncoupling 
protein 2  (UCP2).[26] In the same way, Dastbarhagh et  al. 
reported that 8  weeks CR with or without carbohydrate 
limitation can enhance GLUT4 gene expression in male 
Wistar rats.[27] TRF did not influence FBS and insulin 
sensitivity favorably. It seems that TFR lasting for more 
than 21  h can have a positive effect on insulin resistance 
through an increment of beta‑hydroxybutyrate, pyruvate 
dehydrogenase bypass, and acetyl‑CoA increases.[28] Unlike 
the observations around insulin and FBS, DIF significantly 
decreased HDL and APOA1 serum concentrations 
compared to CON and CR, which points to the effect 
of inappropriate food intake time on HDL. This is 
noteworthy, due to the impact of HDL  (rather than LDL) 
on cardiovascular disease.[29]

In summary, in contrast to previous studies, no changes in 
IGF following CR or TRF indicates the role of previous 
obesity in addition to calorie intake on CR‑induced 
changes in IGF. However, the changes in this factor are 
studied and compared, different amount of CR or longer 
period of fasting may have different effects which were not 
studied on  the other hand, the comparison between protein 
restriction which may have a sting role on IGF1 level with 
TFR (of course is not in the form of alternate‑day fasting) 
is suggested. Moreover, this study reports an adverse effect 
of inappropriate food intake time on HDL and APOA1, 
which may be a risk factor for future cardiovascular 
disease and further studies in this regard may help to lead 
to a clear conclusion.
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