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Introduction
Coronavirus, discovered in the 1960s, is a 
RNA virus. Six species have been known 
to infect human hosts. They cause mild 
to serious respiratory problems. In the 
last two decades, severe acute respiratory 
syndrome coronavirus  (SARS‑CoV) 
and Middle East respiratory syndrome 
coronavirus  (MERS‑CoV) have been 
recognized. These zoonotic and pathogenic 
coronaviruses have caused global or 
regional outbreaks. Recently, severe 
acute respiratory syndrome coronavirus 
2  (SARS‑CoV‑2) has been identified. It 
causes COVID‑19, a respiratory illness. In 
a very short time, COVID‑19 became the 
greatest health challenge worldwide.[1]

COVID‑19 disease has some similarities 
with other viral diseases such as SARS and 
MERS. For example, all are initiated by 
zoonotic transmission and spread rapidly 
among humans. In addition, they cause 
severe respiratory illness and death, and all 
can develop a cytokine storm.[2,3] However, 
when they enter host cells, MERS‑CoV 
binds to dipeptidyl peptidase 4 and 
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SARS‑CoV and SARS CoV‑2 bind 
to angiotensin‑converting enzyme 
2 (ACE2).[4] SARS‑CoV‑2 has more affinity 
for ACE2 receptors makes it spread so 
easily.[5] Additionally, SARS‑CoV‑2 infects 
and replicates within endothelial cells. 
SARS‑CoV‑2 can infect both alveolar 
epithelium and pulmonary microvascular 
endothelium.[6] During SARS‑coV‑2 
infection, a part of pathogenesis is caused 
by thrombin activation which results in 
thrombotic complications.[7]

The immune responses have essential roles 
in the resolution of a viral infection, but 
they can also result in immune pathogenesis. 
If the immune system functions properly 
and in the absence of any basic disease, 
the virus can be effectively suppressed in 
the acute phase. Nonetheless, when the 
body fails to produce an adequate adaptive 
response, a cytokine storm and diffuse 
organ involvement occur.[4] Increasing 
evidence shows that the development of 
an adaptive immunity is controlled by 
the invading microorganisms and innate 
immune systems.[8] The aim of this review 
was to gain improved understanding of 
the mechanisms of immune responses 
against coronaviruses, which are essential 
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in the development of a safe prophylactic vaccine. Besides, 
studying the immune responses in SARS patients and 
MERS patients can improve the treatment strategies of 
SARS‑Cov‑2‑infected patients.[9,10]

The Possible Transmission Routes
Although the mentioned viruses have a zoonotic nature, 
they rapidly spread from human to human. The transmission 
route of SARS‑CoV‑2 is controversial. It is suggested 
that virus is transmitted from person to person through 
droplets.[11] Saliva has a great impact on the transmission 
of infection. Coronaviruses, including SARS‑Cov‑2, have 
been demonstrated in saliva. SARS‑Cov‑2 virus has been 
detected in both salivary gland ducts and gingival crevicular 
fluid  (GCF).[12] Besides, ocular surface is a potential 
infection route for both the entry and exit of the virus.[13] Of 
note, SARS‑Cov‑2 can be found in sputum, stools, urine, 
blood/serum, tear, and cerumen samples.[14,15] SARS‑CoV 
binds to the host cells through its target receptor, the ACE2 
protein. It is also believed that SARS‑CoV might pass 
via the mucous membranes, particularly nasal and larynx 
mucosa then enters the lungs.[16] DPP4, the receptor for 
MERS‑CoV, is expressed in type  I and type  II alveolar 
cells, bronchial epithelium, endothelial cells, alveolar 
macrophages, and leukocytes. Like the virus of SARS, 
MERS‑CoV can infect and replicate in the human airway 
epithelial cells.[17]

Hypothetical Pathogenesis of SARS‑CoV‑2, 
SARS‑CoV, and MERS‑CoV
SARS‑CoV‑2 enters alveolar cells expressing ACE2 
and transmembrane protease serine 2. Replication of 
the virus results in releasing viral nucleic acids which 
are recognized by other cells including epithelial cells, 
endothelial cells, and alveolar macrophages. Consequently, 
proinflammatory cytokines and chemokines including IL‑6, 
IP‑10, macrophage inflammatory protein 1 alpha (MIP‑1α), 
MIP1β, and monocyte chemoattractant protein‑1  (MCP‑1/
CCL2) are generated. Then, T cells, monocytes, and 
macrophages infiltrate to the site of infection which 
enhance more inflammation. Accumulation of immune cells 
in the lungs causes a “cytokine storm” which circulates in 
other organs.[18] A cytokine storm in response to type 1 and 
type  2 T helper  (Th) cells has been proposed as the main 
pathophysiology of COVID‑19 infection.[19] It has also 
been suggested that proinflammatory cytokine/chemokine 
responses result in apoptosis of lung epithelial cells and 
endothelial cells.[20]

ACE2 is also expressed on oral epithelial cells. Higher 
expression of ACE2 has been indicated in the tongue 
mucosa suggesting the susceptibility of oral cavity to 
SARS‑CoV‑2 infection. ACE2 also distributes in the 
salivary gland tissues. ACE2 receptors can be detected on 
salivary duct epithelial cells, early targets of SARS‑CoV‑2 
infection. It is suggested that SARS‑Cov‑2 fuses into 

the salivary duct epithelial cells, replicates in them, and 
be released into saliva.[21] Vimentin, an intermediate 
filament protein, has a great impact on different cellular 
processes such as cell division and migration.[22,23] Besides, 
vimentin contributes to pathological conditions such as 
immune responses and autoimmune diseases. Vimentin 
is a cytoplasmic protein; however, it can be found at 
extracellular locations or at the surface of different cell 
types.[24] Interestingly, at the cell surface, it functions as 
a receptor for bacterial and viral pathogens. Regarding 
SARS‑CoV, vimentin has a key role in virus attachment and 
entry. As vimentin is produced by activated macrophages, 
it can act as a proinflammatory factor. It can also induce 
the proinflammatory cytokines and tissue damage. On the 
other hand, vimentin presents in M2 macrophages; hence, 
it may accelerate lung repair.[25] A recently published study 
has shown the potential interactions between vimentin and 
several SARS‑CoV‑2 proteins including S protein. The 
authors have suggested that extracellular vimentin might 
act as an important component of the SARS‑CoV‑2 spike 
protein‑ACE2 complex, which mediates SARS‑CoV‑2 
cell entry. Therefore, vimentin may increase SARS‑CoV‑2 
host cell invasion by functioning as an attachment 
factor.[26] Accumulating evidence suggests that SARS‑CoV‑2 
infection promotes the innate and adaptive immune cell 
activation in infected host. An impaired immune system 
combined with a basic disease cannot effectively control 
the virus in the acute phase; hence, the patient enters a 
critical and severe phase.[27] Some of SARS proteins such 
as replicase, spike, Orf3, Orf4, Orf13, envelope, membrane, 
and nucleocapsid can stimulate T cell responses, which are 
correlated with higher neutralizing antibody activity.[28] The 
pathophysiology of SARS‑  CoV‑2 infection depends on 
aggressive inflammatory responses causing damage to the 
airways. Thus, disease severity depends on both the viral 
infection and the host response.[29,30] Higher number of 
neutrophils and monocytes in the lung tissue and peripheral 
blood, serum cytokines, and chemokine levels are higher 
in severe cases compared to those in mild to moderate 
cases.[20] SARS‑CoV virus can avoid innate antiviral type  I 
interferon (IFN) responses of host cells in order to prolong 
viral replication and survival.[8] MERS‑CoV is also able 
to manipulate the innate and acquired immune responses, 
block, or prevent IFN production pathways.[31]

Clinical Features
According to the clinical investigations, the mean 
incubation period of SARS‑CoV‑2 is 7.8  days. However, 
the clinicians recommend a quarantine period of 14 days.[32] 
The incubation periods of MERS‑CoV and SARS‑CoV 
are about 4.5–5.2  days and 4.0  days, respectively.[33] 
The clinical features vary from asymptomatic and mild 
clinical symptoms to acute respiratory‑distress syndrome 
and death.[34] In addition to respiratory tract, coronavirus 
infections may involve other organs/systems including 
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heart, gastrointestinal tract, liver, kidney, skin, and eyes.[35] 
SARS‑CoV and SARS‑CoV‑2 have similar clinical features 
including fever, pneumonia, dyspnea myalgia, dry cough, 
and fatigue.[36] Due to excessive viral immunoreaction and 
SARS‑CoV‑2 entry into salivary glands, chiefly parotid 
and submandibular glands, salivary tissue damage may 
happen. Consequently, chronic obstructive sialadenitis 
may develop which is associated with swelling, pain, and 
discomfort in affected salivary glands.[21] Advanced age, 
male gender, cardiovascular disease, and risk factors such 
as hypertension, diabetes, and obesity are associated with 
poor prognosis.[37] Fever, dyspnea, cough, generalized 
fatigue, vomiting or diarrhea, abdominal pain, confusion, 
and myalgia or arthralgia are common in patients with 
MERS‑CoV infection.[38]

Immune Responses in MERS‑CoV, SARS‑CoV, 
and SARS‑Cov‑2
Due to the cytokine storm, different types of coronaviruses 
can cause severe pathogenic responses resulting in severe 
pneumonia, pulmonary edema, multiple organ failure, and 
even death. Both MERS‑CoV and SARS‑CoV are able to 
infect monocytes, macrophages, dendritic cells  (DCs), and 
activated T cells,[39] however, only MERS‑CoV can replicate 
in the infected macrophages and DCs to induce inflammatory 
responses and impaired apoptosis in T cells. These findings 
may explain higher mortality rate of MERS‑CoV infected 
patients.[40] Besides, MERS‑CoV can infect human airway 
epithelial cells. MERS‑CoV infection results in increased 
expression of IFN‑β, CXCL10  (interferon‑γ‑inducible 
protein; IP‑10), and MxA.[39,40] MERS‑CoV infection 
also triggers the production of IFN‑α by infected 
cells, which causes the release of some chemokines 
including MCP‑1, CXCL10, and IL‑10 to mediate T cell 
recruitment.[31] In addition, remarkable upregulation of 
TNF‑α, IFN‑ɣ, CCL2, CCL3, CCL5, IL‑12, and IL‑17 
has been indicated.[41,42] Nevertheless, some studies did not 
detect TNF‑α expression in most patients infected with 
MERS‑CoV.[43,44] IFNγ has a critical role in early immunity 
by stimulating both CD8+  and natural killer  (NK) cells to 
induce apoptosis of infected cells.[45] Downregulation of 
IFNγ and Th1‑associated cytokines has been demonstrated 
in the lower respiratory tract of MERS‑CoV‑infected 
patients.[44] Elevated plasma concentrations of IL‑6, 
IL‑1RA, IP‑10, and MCP‑1 are detectable at the acute 
phase of MERS‑CoV infection.[43] IL‑6 is produced by 
T‑cells, macrophages, DCs, and B‑cells and promotes the 
proliferation of T‑cells.[46] IL‑6 is involved in trafficking of 
leukocytes, especially neutrophils which are important in 
pathogenesis of inflammatory reactions.[47] IL‑6 inhibits the 
secretion of IFNγ by blocking CD8+  cells.[34] SARS‑CoV‑2 
infection is associated with a proinflammatory phase, 
which is characterized by elevated levels of cytokines 
including IL‑1β, IL‑1Rα, IL‑2, IL‑6, IL‑10, fibroblast 
growth factor, TNF‑α, granulocyte‑macrophage 

colony‑stimulating factor  (GM‑CSF), granulocyte‑colony 
stimulating factor  (G‑CSF), IP‑10, MCP‑1, MIP‑1α, 
platelet‑derived growth factor, and vascular endothelial 
growth factor  (VEGF). Among them, the expression of 
IL‑6 has a crucial role across the immune system and is 
mainly correlated with increased mortality. Increased 
IL‑6 signaling promotes the maturing naïve T cells into 
effector T cells, induces VEGF expression in epithelial 
cells, increases vessel permeability, and decreases 
myocardium contractility.[48] SARS‑CoV‑2 infects human 
lung tissues more effectively than SARS‑CoV; however, 
SARS‑CoV can trigger higher levels of proinflammatory 
cytokines and IFNs.[36] Interestingly, elevated IL‑6 level in 
SARS‑CoV‑2‑infected patients is higher than the patients 
with SARS‑CoV or MERS.[49] A previously published 
paper has indicated that excessive amounts of inflammatory 
cytokines  (IL‑6, IL‑10, IL‑2, and IFN‑γ) are correlated 
with COVID‑19 severity.[50] CXCL10  (IP‑10) has also 
been evaluated in viral infections. Neutrophils, endothelial 
cells, keratinocytes, fibroblasts, DCs, astrocytes, and 
hepatocytes are able to produce IP‑10. CXCL10 binds 
to chemokine receptor 3  (CXCR3) to recruit T cells, 
monocytes, and NK cells. Enhanced serum level of IP‑10 
has been observed in patients with COVID‑19 especially 
in the most severe cases.[45] Additionally, increased 
expression levels of IP‑10, monocyte‑chemotactic protein 
3  (MCP‑3), hepatocyte growth factor, monokine‑induced 
gamma IFN (MIG), and MIP‑1α are highly associated with 
disease severity during disease progression. Among them, 
IP‑10 and MCP‑3 are excellent predictors for progression 
of COVID‑19.[51] In addition, upregulation of IP‑10 in 
airway epithelial cells and lung fibroblasts is associated 
with severity of MERS‑CoV infection.[52] Increased serum 
levels of IL‑6 and IP‑10 within 2  weeks can be indicated 
in severe cases with MERS infection.[53] Elevated CXCL10 
expression levels have been detected in lung tissues during 
early stages of SARS‑CoV infection; however, some of 
the inflammatory factors such as CCL3, CCL27, CXCL2, 
and CXCL8 are increased in lung tissues during late stages 
of the disease.[54] Elevated expression of proinflammatory 
cytokines including MCP‑1, TGF‑β1, TNFα, IL‑1β, and 
IL‑6 has been indicated in autopsy tissues from patients 
who died of SARS‑CoV.[55] Besides, enhanced expression 
levels of IL‑1α, IL‑1β, and IL‑8 can be measured in 
the lower respiratory tracts of patients infected with 
MERS‑CoV and are associated with tissue damage and 
acute inflammatory responses, which lead to severe 
pathogenesis and mortality.[44] IL‑8 has a great impact on 
neutrophil recruitment and activation. It is hypothesized 
that high IL‑8 expression levels may cause the formation 
of neutrophil extracellular traps (NETs), web‑like structures 
of DNA, and proteins; therefore, this results in severe 
MERS‑CoV infection.[44] In addition, increased expression 
of IL‑8 in MERS‑CoV‑infected patients may upregulate 
CD4 molecules to enhance helper T cell infection.[44] 
Elevated expression levels of IL‑7 and IL‑15 were also 

[Downloaded free from http://www.ijpvmjournal.net on Tuesday, March 15, 2022, IP: 176.102.242.36]



Irani: Immune responses in viral infections

International Journal of Preventive Medicine 2022, 13: 454

recorded in most patients with MERS infection.[56] IL‑7 
plays a key role in T‑cell homeostasis. Increased serum 
IL‑7 level in severe cases of COVID‑19  patients may 
indicate a homeostatic mechanism.[46] MERS‑CoV infection 
also induces Th17 cytokines which recruit neutrophils and 
monocytes to the site of infection or inflammation.[42] Th2 
cytokines have a great impact on the humoral immune 
responses. MERS‑CoV infection is able to downregulate 
the Th2 responses.[44] Increased serum level of IL‑12 has 
also been found in SRAS‑CoV‑2‑  and SARS‑CoV‑infected 
patients.[57]

Antibody response to MERS‑CoV can be found in the 
second and third week after the onset of infection. In 
patients with pneumonia, antibodies can be detected 
13  months after infection.[58] In SARS‑CoV infection, IgM 
and IgG are produced and can be detected in patient’s blood 
3–6 and 8  days after infection, respectively.[59] Regarding 
SARS‑CoV‑2 infection, IgM can be idetected in early‑stage 
infection  (peaks after 2  weeks); however, IgG peaks in 
3 weeks and maintains at a high level for over 48 days.[60] 
Higher IgG level can be observed during late stages or 
postrecovery.[61]

Toll‑like receptors  (TLRs) signaling pathways control the 
MERS‑CoV infection. TLRs are the key mediators of innate 
immune response, and the spike protein of MERS‑CoV is 
able to inhibit the TLR signaling pathways.[31] Stimulation 
of TLRs activates the nuclear factor‑κB  (NF‑κB) signaling 
pathway, which results in the production of inflammatory 
factors from monocytes including IL‑1, TNF‑α, and 
IL‑6 to control virus infections. The innate immune 
reaction signaling initiates by TLR2 through NF‑kB in 
macrophages, monocytes, and epithelial cells.[62] The 
binding of SARS‑CoV‑2 to TLRs results in the release 
of pro‑IL‑1β, which is a mediator of lung inflammation, 
fever, and fibrosis.[63] During infection with SARS‑CoV, 
TLR2 expression allows for IL‑8 production in response 
to S protein.[64] Activation of TLR4 signaling increases cell 
surface expression of ACE2 to facilitate virus entry. It has 
also been shown that after entry to host cells, SARS‑CoV‑2 
is recognized chiefly by TLR7 in endosomes.[65] NETs 
formation by neutrophils in the lungs of patients with 
SARS‑CoV‑2 may be induced via TLR7 signaling.[66] Also, 
activation of TLR7 results in the production of TNF‑α, 
IFN‑α, IL‑12, and IL‑6 to generate specific cytotoxic 
CD8+  T cells.[67] The Notch pathway has a functional 
role during the activity of innate and adaptive immune 
cells. In patients with COVID 19. Notch1 binds to IL‑6 
promoter in macrophages in response to IFN‑γ resulting 
in IL‑6 production. In turn, IL‑6 increases the expression 
of delta‑like ligand‑1 to amplify the Notch signaling.[68] 
JAK1 and JAK3 also promote several cytokines function 
involving in antiviral responses such as IFNγ, IL‑2, 
IL‑15, and IL‑21. Therefore, it is proposed that JAK1/
JAK3 enhances the clearance of SARS‑  CoV‑2. However, 
JAK2 facilitates SARS‑  CoV‑2 entrance. Besides, JAK2 

signaling induces the production of IL‑6 and GM‑CSF.[69] 
The transcription factor NFκB induces the transcription 
of proinflammatory cytokines. Activation of NFκB has 
been recorded in infections with both SARS‑CoV and 
MERS‑CoV. In MERS‑CoV‑infected patients, Th17  cells 
are able to produce IL‑17 via the STAT3 and NF‑κB 
signaling pathways.[31] Also, increased expression level of 
IL‑10 in MERS‑CoV‑infected patients has been indicated. 
IL‑10 has an antiinflammatory effect mediated through 
JAK‑STAT pathway.[42]

The Role of Inflammatory Cells
In acute phase of MERS‑CoV infection, proinflammatory 
Th1 and Th17 responses can be found with increased 
concentrations of IFN‑γ, TNF‑α, IL‑15, and IL‑17.[42] 
Th2  cells stimulate antibody production by secreting IL‑4, 
IL‑5, IL‑9, IL‑10, and IL‑13.[70] Overactivation of CD8+ T 
cells can also be detected in acute phase of MERS‑CoV 
infection, though CD4+  T‑cells play a minor role in acute 
phase.[43] Neutrophils are the most abundant immune cells 
in the innate immune system. Neutrophils play a critical 
role in the clearance of pathogens and debris through 
phagocytosis. It has been suggested that neutrophils promote 
antiviral defenses via different mechanisms and cytokine 
release.[62] Neutrophils release NETs for viral inactivation 
and cytokine production to restrict virus replication. On the 
other hand, neutrophils are highly immunogenic and toxic 
to the host tissue and cause inflammation, and epithelial and 
endothelial cell death. Increased neutrophil and monocyte 
counts have been observed in more severe and fatal cases 
of MERS infection.[56,71] Migration and recruitment of 
neutrophils have been induced by the proinflammatory 
cytokines such as IL‑8, TNF‑α, and IL‑6.[72] CD8+ T cells 
contribute to MERS‑CoV clearance by producing IFN‑γ 
and granzyme.[31]

A significant increase of Th‑1‑related cytokines, interferons, 
and IL‑2, IL‑12, IFN‑γ, and TNF‑α has been indicated in 
mild cases of SARS‑CoV patients.[72] Increased expression 
level of IL‑2 has also been found in SARS‑CoV patients. 
IL‑2 is produced by CD4+  T cells and CD8+  T cells.
[73] Decreased number of CD4+  and CD8+  T cells has 
been shown at the early phase of SARS‑CoV infection 
and is associated with adverse outcomes. It is believed 
that activation of IP‑10 results in a significant decrease 
in peripheral CD4+, CD8+  T lymphocytes, and NK cells.
[74] Th‑1 cell phenotype stimulates the proliferation and 
activation of cytotoxic T lymphocytes and promotes the 
phagocytic activity of macrophages in SARS infections.
[72] In addition, a marked elevated of Th2 cytokines  (IL‑4, 
IL‑5, IL‑10) has been reported in fatal SARS cases.[28] 
A previous in  vivo study has shown the production of 
IP‑10, CCL‑2, CXCL‑1, and CXCL‑3 by neutrophils. 
The authors have suggested that neutrophils may induce 
other cell types to synthesize these chemokines.[75] DCs 
and macrophages are attracted to the site of infection via 
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increased expression levels of CXCL‑10/IP‑10, CCL‑2/
MCP‑1, CXCL‑5/RANTES, and CCL‑3/MIP‑1α. Infected 
DCs during SARS‑CoV infection induce the expression 
of CCL2, CCL3, CCL5 and CXCL10.[76] In addition, the 
monocyte differentiation to macrophages is activated by 
proinflammatory cytokines, including GM‑CSF, IFN‑α, 
IL‑6, and TNF‑α.[77]

SARS‑CoV‑2 infection is characterized by lower total 
lymphocyte count  (CD4+  and CD8+  T‑cells, NK cells, and 
B cells) in circulation, higher neutrophil and monocyte 
counts, and an increased production of inflammatory 
cytokines which are correlated with disease severity and 
death.[46,78,79] Lymphopenia might be caused by increased 
serum cortisol level.[46] Also, it has been shown that IL‑6, 
produced by infected macrophages, promotes lymphocyte 
necrosis.[74] Lower T‑cell count is because of increased 
apoptosis and/or reduced proliferation rates.[46] Higher 
neutrophil‑to‑lymphocyte ratio, a well‑known marker 
of infection and systemic inflammation, is suggestive 
for poor prognosis.[79] Besides, a decreased number of 
circulating CD4+  cells, CD8+  cells, B cells, NK cells, 
monocytes, eosinophils, and basophils can be indicated.
[80] A significant increase in the proportion of naïve helper 
T cells and reduction in memory helper T cells and 
regulatory T cells can be detected in SARS CoV‑2‑infected 
patients. Rapid reduction of lymphocytes mainly T 
lymphocytes  (both CD4+  and CD8+  T lymphocytes) in 
peripheral blood has been found in the acute phase of 
infection.[4] Higher serum levels of IL2, IL7, IL10, GSCF, 
IP‑10, MCP1, CCL3  (MIP1A), and TNF‑α in severe cases 
of COVID‑19  patients reflect the activation of T‑helper 
1 (Th1) cells.[74] It is suggested that the number of CD4+ T 
and CD8+  T cells is negatively correlated with the levels 
of TNF‑α, IL‑6, and IL‑10, respectively. This finding may 
suggest that aforementioned cytokines are involved in a 
decrease in T cell counts.[81] In patients with COVID‑19, 
overactivation of CD8+  T cells has been documented in 
COVID‑19  cases.[82] However, the ratio of CD4:CD8 
remain normal and stable.[83] Overactivation of CD4+  and 
CD8+  T‑cells in the early phase of COVID‑19 results in 
the production of GM‑CSF.[74] Nonetheless, CD8+  T cells 
are cytotoxic killing virus‑infected cells via producing 
the cytotoxic molecules such as perforin and granzyme 
B.[84] Cell‑mediated immunity including T‑cells  (T 
helper and cytotoxic) has a great impact on efficient 
antiviral responses. T  cells also have critical roles against 
viral infections. For instance, CD4+  T cells facilitate 
virus‑specific antibody synthesis via the T‑dependent 
activation of B cells[85] and in SARS‑CoV‑2 infections; 
CD4+  T‑cells  (especially TH1  cells) react to S‑protein.
[46] Memory CD4+  T cells and CD8+  T cells have been 
found in 100 and 70% of recovered patients, respectively. 
It has been suggested that memory T cell reactions are 
for different SARS‑CoV‑2 proteins such as spike protein, 
nucleoprotein, and membrane protein.[86] Additionally, it 

has been believed that disease severity in COVID‑19 may 
be associated with low IFN‑γ production by CD4+ T‑cells. 
The proportion of Th17 cells is augmented in the peripheral 
blood. Th17 cells are mainly stimulated by IL‑6 and IL‑23.
[50] GM‑CSF synthesis is increased during the acute phase 
of COVID 19  patients by Th17  cells.[45] Additionally, 
reduced number of NK cells and B cells has been reported 
in patients with severe COVID‑19  patients. A  previously 
published paper has shown that overexpression of 
inhibitory signals can suppress T‑cell and NK cytokine 
secretion in COVID‑19  patients.[87] Reduced functional 
markers of NK cells  (CD107a, IFN‑γ, IL‑2, and TNF‑α) 
have been consistently reported in COVIC‑19  patients 
compared to healthy controls. Also, a decreased expression 
levels of granzyme B in the NK cells of the patients have 
been detected.[78]

Two types of pulmonary macrophages can be indicated: 
alveolar macrophages, residing close to type  I and type  II 
epithelial alveolar cells, and interstitial macrophages which 
are predominantly found between the endothelial layer and 
alveolar epithelium zone.[88] Functionally, both macrophages 
are divided into two types: First, M1 macrophages which 
are activated by pathogens including viruses. Later, their 
activation is promoted by Th1  cells. M1 macrophages 
attract immune cells into the lung parenchyma. Second, M2 
macrophages activated by Th2 cells (IL‑4, IL‑13). Increased 
activation of M1 macrophages in SARS‑Cov‑2‑infected 
patients results in the production of inflammatory cytokines. 
Among the produced cytokines, IP‑10 leads to cytokine 
storm.[89] GM‑CSF stimulates monocytes/macrophages to 
produce IL‑6 and some other inflammatory factors.[74] In 
the upper respiratory tract, macrophages express different 
chemokines and proinflammatory cytokines such as IL‑1B, 
IL‑8, IL‑18, and TNF‑α.[74] Also, it has been reported that 
monocytes stimulated NK cells to produce IFN‑γ through 
IL‑8.[90]

The production of chemokines and mediators by infected 
cells results in the infiltration of neutrophils at the site 
of infection. Neutrophilia may be a risk factor for the 
development of acute respiratory distress syndrome and 
death. Neutrophils secrete cytokines and chemokines 
that attract more immune cells such as T lymphocytes 
and monocytes. Cytokines such as G‑CSF, CXCL10, 
MCP1, MIP1A, and TNF‑α are responsible for attracting 
neutrophils to the inflammatory sites. These findings may 
highlight the role of neutrophils in the severity of illness in 
COVID‑19  patients.[91] In COVID‑19  patients, the release 
of NETs can protect the host. In addition, neutrophils 
produce TNF, IL‑6, IL‑8, and reactive oxygen species.[62] 
However, the overproduction of NETs causes lung tissue 
damage  (killing lung epithelial cells) via enzymes such 
as neutrophil elastase  (NE) and myeloperoxidase.[62,66] 
Additionally, the increase in platelet‑neutrophil aggregates 
results in increased levels of NET and immunothrombosis 
formation. Immunothrombosis causes microvascular 
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occlusion in the lung.[92] A previous animal study also 
found that neutrophilia is associated with hemorrhagic 
lesions in the lungs of rats with coronavirus infection. 
Upregulation of ELANE  (a NE) in patients with SARS 
and COVID‑19  patients might be the reason for the 
hemorrhaging of lungs, one of the leading causes of 
death.[91]

DCs are a diverse group of antigen‑presenting cells 
and play pivotal roles in the initiation and regulation of 
innate and adaptive immune responses. DCs produce 
IL‑12 and type  I IFNs.[93] In addition, DCs produce IL‑15 
which activate NKcells.[90] Table 1 summarizes the role 
of inflammatory cells in SARS-CoV-2, SARS-Cov and 
MERS-CoV infections.

Diagnosis and Detection Methods
Figure 1 summarizes the pathophysiological mechanism of 
coronavirus infection resulting in the excessive production 

of cytokines. Early detection of virus‑infected patients 
has a great impact on the prevention of transmission. The 
diagnosis of COVID‑19 is based on the combination of 
epidemiologic information such as a history of travel to 
or residence in affected areas 14  days prior to symptom 
onset, clinical symptoms, CT findings, and laboratory 
tests  (RT‑PCR) on respiratory tract samples.[102] Beside 
to oropharyngeal swabs specimens, SARS‑CoV‑2 can be 
detected in urine, blood, and anal swabs.[103] Analysis of 
saliva and the GCF is a noninvasive diagnostic method. 
SARS‑CoV‑2 can be detected in saliva samples in the 
early phase of infected patients. In a previous study, saliva 
was detected in 91.67% of SARS Cov‑2  patients a few 
days after hospitalization.[104] In this study, to confirm that 
salivary glands were infected with SARS‑Cov‑2, saliva was 
directly collected from the opening of salivary glands.[105] 
Interestingly, very recent study has found that tear sample 
from a patient with conjunctivitis can also be used as a 
tool for detection of SARS‑CoV‑2.[106] Chest CT is a useful 
diagnostic tool in most patients with COVID‑19. In some 
patients with negative qRT‑PCR results but with clinical 
symptoms, typical CT features are visible. A meta‑analysis 
found that the sensitivity and specificity of initial chest CT 
scan for highly suspicious individuals for COVID‑19 are 87 
and 43%, respectively. It means that a chest CT scan can 
be considered as an adjuvant diagnostic tool.[107] A recently 
published work has indicated that SARS‑CoV‑2 antigen and 
RNA can be detected in formalin fixed paraffin‑embedded 
specimens using immunohistochemistry.[108] Detection 
with genomic sequencing is also a rapid and complete 
diagnostic method. This technique is able to investigate 
SARS‑CoV‑2 evolution during transmission. Also, this 
technique can identify several pathogens in a single 
patient.[109] SARS‑CoV antibodies include spike and 
nucleocapsid proteins. Detection of IgM and IgG against 
SARS‑CoV‑2 is a fast and simple screening method.[110] 
A very recent study has indicated that the combination of 
IgM and IgG antibodies is an accurate diagnostic test with 
84.5% sensitivity and 91.6% specificity.[111] Polymerase 
chain reaction  (PCR) test was rapidly developed for 

Table 1: A summary of the role of inflammatory cells in SARS‑CoV‑2, SARS‑Cov, and MERS‑CoV infections
MERS‑CoV (Reference)SARS‑CoV (Reference)SARS‑CoV‑2 (Reference)Inflammatory cell type
IFN‑γ , TNF‑α, IL‑15, 
IL‑17,[42] IL‑17[94]

IL‑2, IL‑12, IFN‑γ, TNF‑α, IL‑17,[95]

IL‑4, IL‑5, IL‑10,[80] CCL5[96]

IL2, IL7, IL10, GSCF, IP‑10, 
MCP1, CCL3 (MIP1A), TNFα,[63] 
IL‑10,[46] GM‑CSF,[45,74] CCL5[96]

T helper cells: Th1, 
Th2, and Th17

IFN‑γ and granzyme[31]IFN‑γ, TNF‑α, CD107a,[28] IL‑2[73]Perforin, granzymes, IFN‑γ,[81]

GM‑CSF[74]

CD8+T cells

 IFN‑γ, TNF‑α[42]IFN‑γ, IL‑6, IL‑8, IL‑10, IL‑12[28]IFN‑γ[90]Natural killer cells
IFN‑γ, IL‑15,[42]

IL‑8, IL‑12[41]

IFN‑γ, IL‑6, IL‑8, IL‑10, IL‑12,[28]

TNF, IL1‑β, nitric oxide , CCL2, CXCL10[97]

IL‑10,[46] IL‑6, TNF‑α, IL‑10[74]Monocytes/
macrophages

NETs, granules[44]IP‑10, CCL‑2, CXCL‑1, CXCL‑3,[75] ELANE[91]NETs,[62] ELANE[91]Neutrophils
IL‑6 and TNF‑α, IFN‑γ, 
IL‑12, IP‑10[98]

TNF‑α , IL‑6, CCL2, CCL3, CCL5, CXCL10[76] IL‑12, type I IFNs,[93] IL‑15,[90]

IL‑10,[46] IL‑15[90]

Dendritic cells

IgM, IgG[99]IgM, IgG, IgA[100] IgG , IgM,[101] IL‑10[46]B lymphocytes

Figure 1: Corona virus binds to Lung Epithelial Cells which causes the 
activation of inflammatory cells and cytokine storms
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diagnosis of the virus.[112] RT‑PCR is the most reliable 
method for COVID‑19 diagnosis. A  previously published 
study on the accuracy of RT‑PCR results has indicated 
that specimens from bronchoalveolar lavage fluid are 
positive in 93 and 72% of cases, respectively.[113] It seems 
that pharyngeal swabs have lowest sensitivity and nasal 
swabs is more sensitive than pharyngeal swabs.[114] Besides, 
RT‑PCR is the gold standard for sputum samples.[111] 
However, the exact sensitivity and specificity of RT‑PCR 
tests for COVID‑19 are not clear, but it is suggested that 
a positive test is highly suggestive of true infection, but a 
negative test does not rule out the disease.[114]

In the first 5  days of SARS‑CoV infection, throat swabs, 
nasopharyngeal aspirates, and sputum samples are the 
most useful clinical specimens, but later viral RNA could 
be found more readily in stool specimens.[115] Respiratory 
tissue samples are used to identify patients with 
MERS‑CoV.[116] RT‑PCR is also a suitable test for detection 
of MERS‑Cov.[117]

Therapeutic Strategies For
There is still no effective treatment for MERS‑CoV or any 
other coronavirus infections. Supportive care strategies 
and preservation of renal, hepatic, and neurological 
function may help clinicians to deal with the infection.[118] 
To avoid the innate immune responses, SARS‑CoV and 
MERS‑CoV use several strategies. Therefore, suppression 
of IL‑1 family members and IL‑6 can be considered as 
a therapeutic strategy in many inflammatory diseases, 
including viral infections. Besides, IL‑37 and IL‑38 are 
able to suppress IL‑1β and are considered as potential 
therapeutic cytokines.[63] Remdesivir was first developed for 
the treatment of Ebola virus infection. A  recent published 
study has reported that a combination of remdisevir and 
IFN‑β has an antiviral function in MERS‑CoV patients.[119]

Due to high level of IL‑6, blockade of interleukin‑6 signaling 
may become a new method for the treatment of severe 
patients. Tocilizumab is a blocker of IL‑6R which blocks IL‑6 
signal transduction pathway.[50] In addition, blocking of IL‑6 
in severe cases of COVID‑19 infections results in increasing 
the absolute lymphocyte blood count and cytotxic functions 
of NK cells.[78,120] Due to the elevated expression of IL‑1β in 
most COVID‑19  patients with severe symptoms, inhibition 
of IL‑1 has been suggested as a therapeutic strategy.[121] 
Also, leukotriene B4 that activates neutrophils is able to kill 
human coronavirus, respiratory syncytial virus, and influenza 
B virus. Besides, adaptor‑associated protein kinase 1 inhibits 
SARS‑CoV‑2 viral infection through clathrin‑mediated 
endocytosis. Endocytosis is a way that viruses enter 
human host cells.[122] Currently, remdisevir is suggested as 
an antiviral drug for SARS‑CoV‑2. Nevertheless, further 
clinical trials are needed to assess the efficacy and safety 
of remdesivir for SARS‑CoV‑2 pneumonia patients.[123] 
Antiinflammatory drugs including corticosteroids can reduce 
the effect of cytokine storms and lung damage. A  short 

course of systemic corticosteroids can be tolerated among 
patients with SARS‑CoV‑2.[3] The use of glucorticosteroids 
has been considered as a therapeutic strategy, even so, the 
timing of administration and the dosage play key roles in 
the outcome in severe cases. Too early administration of 
glucocorticoids increases the viral load because it can inhibit 
the initiation of immune responses. It is suggested that 
glucocorticoids to be used in severe cases to prevent acute 
respiratory syndrome.[20] Vaccine seems to elicit both the 
humoral and cellular immune system. An ideal vaccine is 
characterized by safety and protection efficacy in large‑scale 
clinical trials. To date, several vaccines have reached to the 
final stages. Currently, it is not possible to compare different 
vaccines.[124] Vaccines against SARS‑CoV‑2 can be divided 
into three main groups: RNA‑, DNA‑, and peptide‑based 
vaccines.[125] The phase III clinical studies of mRNA vaccines 
show efficacy by 95%.[126]

Conclusions
In the past two decades, the world has faced with three 
coronavirus outbreaks which have caused global health 
consternation. The new coronavirus, SARS‑CoV‑2, has 
infected more people than SARS‑Cov and MERS‑CoV 
as it can easily be transmitted from person to person. 
Epidemiological studies indicate that majority of individuals 
are asymptomatic. Therefore, an effective and an efficient 
tool is required for rapid testing. Dysregulation of cytokine 
levels have been reported in infected patients and immune 
responses have a great impact on the determination of 
course of infection. However, cytokine levels differ in 
severely affected patients and those with moderate or 
mild symptoms. So, identification of cytokine level can 
help in recognition of patients with severe disease. Still, 
further studies are needed to assess the immune differences 
between different types of coronavirus infections and 
different patients. Besides, due to high mortality rate, it is 
crucial to develop antiviral therapeutics and vaccine. To 
achieve this goal, it is needed to understand the molecular 
mechanisms of the virus life cycle. A  comparative study 
of SARS‑CoV‑2 outbreak with the previous coronavirus 
outbreaks may provide additional light into the most 
effective therapeutic strategies. As COVID‑19 is a serious 
threat to public health, identifying biomarkers for disease 
is an urgent need. To identify biomarkers, it is necessary to 
recognize the involved cytokines and factors.
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