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Introduction
Tramadol (TRA) is a pain killer and analgesic 
agent, abuses of which are associated with 
consequences such as mood and behavioral 
disturbances, hallucination, and euphoria.[1,2] 
This property of TRA has resulted in increases 
of its improper use during recent decades.[1‑3] 
Long‑term TRA administration or abuses 
can causes neurodegeneration, which 
is mediated by activation of oxidative 
stress, neuro‑inflammation, and 
apoptosis or neural cell‑related signaling 
cascades.[4‑7] Evidence indicates that 
mitochondrial dysfunction is involved in 
TRA‑induced neurodegeneration.[8‑10] Many 
studies show that the chronic use of TRA 
increases the production of free radicals, 
as well as the production of ROS and 
reactive nitrogen species and the activation 
of lipid and protein peroxidation.[11‑13] In 
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Abstract
Background: Previous evidence indicates that tramadol (TRA) can lead to neurodegenerative 
events and minocycline (MIN) has neuroprotective properties. Aim of the Study: The current 
research evaluated the neuroprotective effects of MIN for TRA‑promoted neurodegeneration. 
Methods: Sixty adult male rats were placed into the following groups: 1 (received 0.7 ml/rat of 
normal saline, IP), 2 (received 50 mg/kg of TRA, i.p.), 3, 4, 5 (administered TRA as 50 mg/kg 
simultaneously with MIN at 20, 40, and 60 mg/kg, IP, respectively), and 6 (received MIN alone as 
60 mg/kg, IP). The treatment procedure was 21 days. An open field test (OFT) was used to measure 
motor activity and anxiety‑related behavior. Furthermore, oxidative stress; hippocampal inflammation; 
apoptotic parameters as well as activity of mitochondrial complexes I, II, III, and IV; ATP levels; 
and mitochondrial membrane potential (MMP) were evaluated. In addition, histomorphological 
alteration was assessed in two regions of the hippocampus: Cornu Ammonis (CA1) and dentate 
gyrus (DG). Results: MIN treatment could inhibit TRA‑induced anxiety and motor activity 
disturbances (P < 0.05). In addition, MIN could attenuate reactive oxygen species (ROS), H2O2, 
oxidized glutathione (GSSG), and malondialdehyde (MDA) level (P < 0.05), while there was 
increased reduced glutathione (GSH), total antioxidant capacity (TAC), ATP, MMP, and BCL2 
levels (P < 0.05) and also elevation of SOD, GPX, GSR (P < 0.05), and mitochondrial complexes I, 
II, III, and IV activity (P < 0.05) in TRA‑treated rats. In consistence with these findings, MIN could 
reduce TNF/TNF‑α, IL1B/IL1‑β, BAX, and CASP3 levels (P < 0.05) in TRA‑treated rats. MIN 
also restored the quantitative (P < 0.05) and qualitative histomorphological sequels of TRA in both 
CA1 and DG areas of the hippocampus. Conclusions: MIN probably has repositioning capability 
for inhibition of TRA‑induced neurodegeneration via modulation of inflammation, oxidative stress, 
apoptosis, and mitochondrial disorders.
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addition, the results show that TRA inhibits 
the function and level of antioxidants and 
inhibits the cellular defense against oxidative 
agents by inhibiting SOD (superoxide 
dismutase), CAT (catalase), GPX (glutathione 
peroxidase), and GSR (glutathione‑disulfide 
reductase) enzymes and glutathione‑derived 
antioxidants.[11‑14] In this regard, previous 
works have shown that tramadol destroys 
nerve cells by activating inflammatory and 
proinflammatory messengers, cytokines, 
signaling related to prostaglandins, 
inflammatory kinases, and nitric oxide and 
affects many pathways.[12,15‑17] Activation 
of neuronal cell death pathways caused 
by tramadol has also been demonstrated 
by other studies, and it has been shown 
that this compound plays a serious role in 
inducing neurodegeneration by activating cell 
signaling related to apoptosis, autophagy, and 
necrosis.[17,18]
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In spite of all this direct and indirect evidence about 
TRA‑induced neurodegeneration, the relevant signaling 
cascades and a clear mechanism of action have not 
yet been characterized.[5,7‑10] To date, the entirety of the 
molecular dimensions of the neurotoxic effects of TRA 
has not been determined and needs to be investigated; 
also, limited efforts have been made, in the form of a 
few studies, toward the management of TRA neurotoxic 
effects and neurodegeneration.[8,18] Based on this concept, 
the introduction of new agents with neuroprotective 
properties or the repositioning of conventional drugs 
with the capability of neuroprotection is necessary for 
the management of drug abuse‑induced events such as 
neurotoxicity and neurodegeneration.

Minocycline (MIN) is an antibiotic from the 
tetracycline group, which has protective antioxidant and 
anti‑inflammatory effects in neuronal cells.[19‑21] MIN 
treatment for effects on behavioral disturbances such 
as anxiety, depression, and cognition was previously 
approved.[22‑24] Molecular evidence suggests that MIN 
can be considered for repositioning therapy for some 
neurodegenerative disorders and disease events such as 
Alzheimer and Parkinson diseases, multiple sclerosis, 
cerebral ischemia, and drug (such as psychostimulant, 
alcohol, and nicotine) abuse‑induced neurotoxicity.[25‑30] 
Previous studies indicated the protective role of MIN in 
the reduction of free radicals, and inhibition of production 
of ROS and reactive nitrogen species, and also confirmed 
its effects in the reduction of lipid and protein peroxidation 
in neurodegenerative events.[31,32] MIN enhances the level 
of aforementioned antioxidants and glutathione function 
during neurodegeneration.[32,33] Previous studies have 
indicated that MIN can restore nerve cell function and 
life by inhibition of inflammatory and proinflammatory 
cascades, reduction of cytokine levels, and signaling related 
to prostaglandins, inflammatory kinases, nitric oxide, and 
other related pathways in neurodegenerative events.[33‑35] 
The use of MIN due to its capability in the inhibition of 
neuronal cell death pathways such as apoptosis, autophagy, 
and necrosis during neurodegeneration was approved 
previously.[21,33,36] It was suggested that the neuroprotective 
properties of MIN are mediated via mitochondria,[26,27,37‑40] 
and it seems a significant part of MIN’s protective effects 
occurs via activation of mitochondrial membrane and 
respiratory chain enzymes function.[41,42] Despite the data 
which introduce MIN as a neuroprotective agent, its 
role in drug abuse, such as that involving TRA‑induced 
neurodegeneration, and the mechanism through which 
it acts remain unclear. Thus, the effects of MIN against 
TRA‑induced inflammation, oxidative stress, mitochondrial 
dysfunction, and apoptosis in hippocampal tissue need 
further assessment. Thus, in the present study, we analyzed 
the potential neuroprotective effects of MIN against 
TRA‑induced neurodegeneration. To better understand the 
mechanism behind the interaction of these two agents, the 

levels and occurrences of oxidative stress, inflammation, 
mitochondrial dysfunction, and apoptosis as well as 
changes in the histology in hippocampal tissue in the CA1 
and DG areas were evaluated.

Methods
Animals

Sixty adult male Wistar rats weighing an average of 
200–250 g (Experimental Research Center, Veterinary 
College at Tehran University) were used in the study. The 
animals were housed under standard laboratory conditions 
at 22 ± 0.5°C with 30–70% humidity and 12‑h light/dark 
cycles. All animals were able to freely access water and 
rat pellet food. The methodologies received approval from 
the Committee on Ethics in Shahid Beheshti University of 
Medical Sciences, Masih Danshvari Hospital (Ethical Code: 
IR.SBMU.NRITLD.REC.1402.001). It should be noted that 
experimental procedures were performed based on technical 
and ethical guidelines of ARRIVE (Animal Research: 
Reporting of In vivo Experiments) guidelines.[43,44]

Drugs

Tramadol (TRA) (CAS number: 36282‑47‑0) and 
minocycline (MIN) (CAS number: 13614‑98‑7) were 
purchased from Sigma‑Aldrich company (MD, USA). Both 
TRA and MIN were freshely dissolved in normal saline 
just before use.

Experimental protocols and design

Sixty adult male rats were divided into six groups as 
follows:
• Group 1 was considered as a sham group, 

which only received normal saline (0.7 ml/rat, 
intraperitoneally [i.p.]) for 21 days, and no other 
treatment process was performed on these animals.

• Group 2 received only TRA (50 mg/kg, i.p.) for 
21 days.

• Groups 3, 4, and 5 were considered as experimental 
groups and received TRA (50 mg/kg, i.p.) and MIN 
(20, 40, and 60 mg/kg, i.p.), respectively, simultaneously 
for 21 days.

• Group 6 received only MIN (60 mg/kg, i.p.) for 21 days 
and was considered as a minocycline control group.

An illustration of the experimental protocols is 
schematically detailed in Figure 1.

The doses of MIN as a neuroprotective agent and 
also TRA as a neurotoxic agent were chosen based on 
previous work.[4,5,26,27,33,45‑50]

On day 22, open field tests (OFTs) were used to provide 
an assessment of anxiety and motor activity disorder. 
After behavioral assessment, on day 23, hippocampal 
tissues of all animals were isolated according to previous 
guidelines.[26,27] These hippocampus tissues were used to 
monitor parameters of mitochondrial function, oxidative 
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Figure 1: The experimental protocols used in this study are illustrated schematically
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stress, apoptosis, inflammation, and also histological 
changes. Right hemispheres of the hippocampi were used 
for evaluation of hematoxylin and eosin staining (H and E), 
and also left hemispheres of the hippocampi were used 
for evaluation of mitochondrial function, oxidative 
stress, apoptosis, and inflammation. Doses of MIN for 
conferring neuroprotection and TRA for induction of 
neurodegeneration or neurotoxicity were selected based 
on previous similar studies.[26,27,45,51] The timeline for 
experimental procedures is indicated in Figure 2.

Behavioral studies

Open field test

An OFT was used to evaluate anxiety‑ and motor 
activity‑related neurobehavioral changes in mice and 
rats.[52,53] For evaluation of this test on day 21, after the 
drug treatments, the animals were transferred to the 
behavioral laboratory to adapt to the conditions of this 
laboratory. Also, on this day, each of the animals was 
subjected to the OFT box test for 5 min to become familiar 
with this test and to know its conditions. The process was 
performed to train the animal for the OFT. The main test 
was performed on day 22. This test was performed using 
a special apparatus (Bionic‑Mobin Company, Tehran, Iran): 
The main apparatus was a box having a square arena of 
60 × 60 × 60 cm. The bottom was black and divided into 
16 equal squares delineated by bright white lines, and the 
walls were opaque. A central square, which was marked 
with red lines, was drawn in the bottom of this box. 
A 100 W bulb was located 110 cm above the apparatus 
and illuminated the OFT box during the experiment; all 
parts of the room in which the box was situated were kept 
dark during the experiment. A camera was placed 2.1 m 
above the equipment, and this camera was connected to 
a camera‑based tracking system (Limelight, Actimetrics, 
Wilmette, IL, USA) and video tracking software, 
EthoVision (XT model, Wageningen, The Netherlands) for 
analysis of animal behavior. Four standard behaviors were 
recorded in this system:

1. Ambulation distance: the number of times a rat crossed 
a line, and the total distance which each rat crossed 
along grid lines.

2. Time spent in the center square: the total amount of 
time spent by each animal with all four paws contained 
within the central red square.

3. Center square entries: the number of central square 
entrances of each animal.

4. Rearing number: the frequency of an animal standing 
on its hind legs on the bottom of the OFT box.[52,53]

Molecular studies

Tissue preparation, protein extraction, and determination 
of mitochondrial function, oxidative stress, inflammation, 
and apoptosis

For evaluation of molecular changes, sodium thiopental 
(50 mg/kg, i.p.) (DNA Biotech Co, Tehran, Iran) was 
injected into each animal, and according to animal 
surgical standards, their hippocampus was removed 
and dissected.[54] For preparation, the hippocampus 
tissue was homogenized in cold homogenization buffer 
(25 mM 4‑morpholinepropanesulfonic acid, 400 mM 
sucrose, 4 mM magnesium chloride [MgCl2], 0.05 mM 
ethylene glycol tetraacetic acid [EGTA], pH 7.3) (DNA 
Biotech Co, Tehran, Iran). The homogenized hippocampus 
was centrifuged for 15 min at 450 g. Subsequently, the 
supernatant was removed and recentrifuged at 5000 g, 
12 min. The centrifuged pellet was resuspended in the 
homogenization buffer and kept at 0°C. The Bradford 
method (Bio‑Rad Co., CA, USA, Dc‑Bio‑Rad, catalog 
number: 5000001) was used for evaluation of the 
protein level of the suspension: 1 portion of Bradford 
reagent: 4 portions of dH2O were mixed with serial 
dilutions (0.1‑1.0 mg/ml) of bovine serum albumin (BSA; 
Sigma‑Aldrich Co, MD, USA, CAS number: 9048‑46‑8) 
to generate a standard curve of concentration vs optical 
density. In the next step, serial dilutions (10, 15, 20, 25, and 
30 μl) of the aforementioned homogenized hippocampal 
protein suspension were mixed with Bradford reagent, 
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Figure 2: Timeline of drug treatments, behavioral assessments and neurochemical evaluations
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and the color/optical density at 630 nm was determined 
with a plate reader. Finally, the standard curve was used 
to calculate the protein content of the hippocampus 
suspensions, and this measurement was applied for 
evaluation of mitochondrial parameters, oxidative stress, 
inflammation, and apoptotic indicators.[55‑57]

Measurement of lipid peroxidation

Malondialdehyde (MDA; CELLBIOLAB Co, San Diego, 
CA, USA, catalog number; STA‑330‑5), a byproduct of 
lipid membrane peroxidation, was used as an indicator. 
For measurement of the MDA level in samples, 10 μL 
of standard sample solution or 10 μL MDA was added 
in wells of microplates and then 10 μL of SDS lysis 
solution (an ionic denaturing detergent) was added to each 
of the wells, which were shaken gently and incubated 
at 37°C. In the next phase, 25 μL of thiobarbituric 
acid (TBA; CELLBIOLAB Co, San Diego, CA, USA, 
Catalog number; STA‑330‑5) reagent was mixed into 
each well and kept for 45–65 min at 95°C. All wells were 
centrifuged at 1000 × g for 20 min, and their supernatants 
were isolated. Thirty μL of the supernatants were mixed 
with 30 μl of n‑butanol (CELLBIOLAB Co, San Diego, 
CA, USA, Catalog number; STA‑330‑5) and centrifuged 
at 7000 g for 5 min. Absorbance of the mixture was read 
at 532 nm. The results were recorded and reported as 
nmol/mg protein.[58,59]

Measurement of reactive oxygen species levels

Hippocampal ROS levels were monitored with the 
use of fluorescein‑labeled dye and conversion of 
2,7‑dichlorodihydrofluorescein diacetate (DCFH‑DA; 
Chemodex Ltd, Gallen, Switzerland, CAS number: 
4091‑99‑0) to fluorescent 2,7‑dichlorofluorescein (DCF) 
via a de‑esterification and oxidation reaction.[60,61] 
2,7‑dichlorodihydrofluorescein diacetate was add to 50 μL 
of homogenate of hippocampus tissue and kept at 37°C 
for 50 min. The fluorescence intensity of DCF was read at 
535 nm. The ROS level was recorded and reported as fold 
change compared to the control.[60‑62]

Measurement of hydrogen peroxide (H2O2) levels

The measurement of H2O2 production was conducted 
using the following setup: 20 μL of hippocampal tissue 
homogenate was added to 80 μL of reaction mixture. 
The reaction mixture consisted of 250 μM sulfate, 
25 mM H2SO4, and 100 μM xylenol orange (DNA Biotech, 
Tehran, Iran). The mixture was then vortexed for 10 s and 
kept undisturbed in a protected area away from light for 
45 min. Following this incubation period, a GENESYS 10 
UV/Vis scanning spectrophotometer (Thermo Scientific, 
Waltham, MA, USA) was used to measure the formation 
of the reaction product at a wavelength of 580 nm. To 
determine the concentration of H2O2 produced, a curve 
using known concentrations of H2O2 ranging from 0 to 100 
nM was created, and the results were expressed as nMol 
H2O2/gram of tissue.[63]

Measurement of SOD2/manganese superoxide dismutase 
activity

For measurement of SOD2 activity, Winterbourn’s method 
was applied.[64,65] The potency of SOD for inhibition of 
nitroblutotrazolium/NBT reduction by superoxide ion is a 
basic principle of this test. Twenty μl of the hippocampus 
homogenate supernatant was mixed with 10 μl of 0.1 M 
sodium cyanide (MERCK Co, Darmstadt, Germany, CAS 
number: 143‑33‑9) and 5 μl of 3 M EDTA (MERCK Co, 
Darmstadt, Germany, CAS number: 60‑00‑4), and then, 
10 μl of 1.5 M nitroblutotrazolium (Cayman Chemical, 
CAS Number: 298‑83‑9) was added. The mixture was 
kept in a special cuvette and incubated for 5 to 10 min 
at 37°C. Riboflavin (MERCK Co, Darmstadt, Germany, 
CAS number: 83‑88‑5), and potassium phosphate buffer 
(0.67 M; pH 8.7) (DNA Biotech Co, Tehran, Iran) was 
added to the cuvette and incubated at 37°C for 12 to 
15 min. Activity of the enzyme was reported in units per 
milliliter/milligram protein.[64‑66]

Measurement of GPX activity

GPX activity was measured according to previous 
standard protocols.[67,68] The mixture to be analyzed 
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(980 μl) contained 0.25 mM NADPH (MERCK Co, 
Darmstadt, Germany, CAS number: 2646‑71‑1), 
2.1 mM reduced glutathione (GSH; Cayman Chemical 
Co, MI, USA, CAS Number: 70‑18‑8), 0.5 units/mL 
of GSR (glutathione‑disulfide reductase) (MERCK Co, 
Darmstadt, Germany, CAS number: 9001‑48‑3)), and 
30 mM tert‑butyl hydroperoxide (Sigma‑Aldrich Co, MD, 
USA, CAS number: 75‑91‑2) and was mixed with 10 μl of 
hippocampal homogenate. Absorbance of the mixture was 
read every 30 s, for 2 min at 340 nm, and the results were 
reported as units, per ml/mg of protein.[66‑68]

Measurement of GSR activity

Twenty μl of hippocampal homogenate was added to 1980 μl 
of reaction mixture, which consisted of 0.1 M phosphate 
buffer, pH 7.6 (DNA Biotech Co, Tehran, Iran), 0.5 mM 
EDTA (MERCK Co, Darmstadt, Germany, CAS number: 
60‑00‑4), 1.0 mM oxidized glutathione (GSSG; MERCK 
Co, Darmstadt, Germany, CAS Number: 27025‑41‑8), 
0.1 mM NADPH (MERCK Co, Darmstadt, Germany, CAS 
number: 2646‑71‑1), and 10 μl of phenazine methosulfate 
(MERCK Co, Darmstadt, Germany, CAS number: 
299‑11‑6). The basic principle of this reaction is the 
disappearance of NADPH, which was read at 340 nm. The 
results were reported as per ml/mg of protein.[69]

Measurement total antioxidant capacity (TAC)

TAC levels were measured using a special kit 
(Sigma‑Aldrich Co, MD, USA, CAS number: MAK 187) 
and evaluated the capacity to convert Cu2+ from its oxidized 
to its reduced form Cu+. According to measurement 
principles, Cu+ can chelate with a special colorimetric 
probe. The absorbance of the complex of Cu+ with the 
colorimetric probe can be detected at a wavelength of 
570 nm, and the results were reported as nM/μg on 
homogenates of hippocampus.[70,71] All procedures were 
conducted according to the kit instructions.

Measurement of GSH and GSSG

In each well of a 96‑well microplate, we added 25 μL 
of the glutathione reductase solution (DNA Biotech, 
Tehran, Iran). Then we introduced 25 μL of a 1X NADPH 
solution (DNA Biotech, Tehran, Iran). Next, we mixed in 
a solution consisting of either glutathione or hippocampal 
samples (100 μL). To start the reaction, we added 50 μL 
of chromogen (DNA Biotech, Tehran, Iran) mixed it well, 
and immediately measured the absorbance, at 405 nm. We 
determined the quantification of GSSG/GSH by referring to 
a curve. The results are expressed as nmol/mg protein.[26,72]

Measurement of changes in levels of apoptosis and 
inflammatory protein expression

An enzyme‑linked immunosorbent assay (ELISA) 
kit (CUSABIO, Co, Huston, TX, USA) was 
used for measurement of BCL2 (BCL2 apoptosis 
regulator) (CSB‑E13604r), BAX (BCL2 associated 

X, apoptosis regulator) (CSB‑EL002573RA), CASP3 
(caspase 3) (CSB‑E08857r), IL1B (interleukin 1 
beta) (CSB‑E08055r), and TNF (tumor necrosis 
factor) (CSB‑E11987r) protein expression/levels in the 
hippocampal homogenates. Briefly, the procedure was 
carried out as follows: All ELISA kits were washed 
3 times with wash buffer which consisted of 0.5 M 
sodium chloride (MERCK Co, Darmstadt, Germany, 
CAS number: 7647‑14‑5), 2.5 mM sodium dihydrogen 
phosphate/NaH2PO4 (MERCK Co, Darmstadt, Germany, 
CAS number: 7558‑80‑7), 7.5 mM Na2HPO4, and 0.1% 
Tween 20 (MERCK Co, Darmstadt, Germany, CAS 
number: 9005‑64‑5), pH 7.2. In the next phase, 100 μl of 
ovalbumin (Sigma‑Aldrich Co, MD, USA, CAS number: 
O1641) 1% (w:v) solution was mixed in each well and kept 
at 37°C for 1 h. Then, all wells were washed 3 times. In 
the next step, 100 μl of standard solution or homogenized 
hippocampus was mixed in each well and stored at 50°C 
for 2 h. Wells were again washed as above, and 100 μl of 
antirat primary antibody against TNF, IL1B, BAX, CASP3, 
and BCL2 was added to all wells. All antibodies were 
diluted in wash buffer 1:999. In the next step, all wells 
were stored at 37°C for 1 h. Then, wells were washed 
as above and filled with 100 μl of AvidinHRP (Santa 
Cruz Biotechnology Co, Dallas, TX, USA, catalog 
number; 1405‑69‑2) and stored 15 min at 37°C. Wells 
were again washed as above and filled with 100 μl 
3,3’,5,5’‑tetramethyl‑benzidine (TMB substrate) (TCI, 
Zwijndrecht, Belgium, catalog number: T3854) and stored 
at 37°C for 15 min. In the final step, 100 μl of 1 M 
H2SO4 (MERCK Co, Darmstadt, Germany, CAS number: 
7664‑93‑9) was mixed in, and the absorbance at 450 nm 
was determined by ELISA reader (Hiperion Microplate 
Reader, MPR4+, Rayto Company, China). TNF and IL1B 
levels were reported as ng/ml of hippocampal sample 
suspension, and BAX, CASP3, and BCL2 were reported 
as pg/ml of hippocampal sample suspension.[73‑75]

Measurement of mitochondrial complex enzymes activity

Mitochondria complexes I, II, III, and IV activities were 
measured using commercial kits (Abcam Co, Boston, 
MA, USA, CAS numbers: Ab287844, Ab109908, 
Ab287844 and Ab109911, respectively). Mitochondrial 
complex I activity was measured based on the oxidation 
of NADH to NAD+, and its absorbance was read at 
450 nm. The activity of mitochondrial complex II was 
assessed according to potential catalysis of the electron 
transfer of succinate to ubiquinone, and its absorbance 
was read at 550 nm. The reaction speed for the 
conversion of the oxidized form of CYCS (cytochrome 
c, somatic) to the reduced form at 600 nm was used for 
the measurement of mitochondrial complex III activity. 
Measurement of the oxidation of the reduced form of 
CYCS at 550 nm was used to monitor mitochondrial 
complex IV activity. All values were reported as 
activity/mg of protein/min.[76,77]
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Measurement of adenosine triphosphate (ATP)

ATP levels in the brain were assessed utilizing an ATP 
assay kit (Abcam Co, Cambridge, UK, CAS numbers: 
Ab83355) as per the manufacturer’s guidelines. Ten mg 
of hippocampal tissue was processed according to the 
aforementioned protocol, and its homogenate was prepared. 
In brief, 20 μl of homogenized tissue was diluted with ATP 
assay buffer. Following neutralization and deproteinization 
with 2 M KOH, the samples were loaded in triplicate onto 
a microplate reader. The OD of the mixture was measured 
at 570 nm using a GENESYS 10 UV/Vis scanning 
spectrophotometer (Thermo Scientific, Waltham, MA, 
USA). The ATP levels were determined by referencing a 
standard curve, and the results were expressed accordingly 
as nmol/mg of tissue.[78]

Measurement of mitochondrial membrane potential (MMP)

MMP was measured by using JC‑1 dye (Cat # 
600880, Cayman, MI). This type of dye can enter 
the mitochondria and cause the formation of 
J‑aggregates (Ex:Em = 560:590 nm; red) or J‑monomers 
(Ex:Em = 485:535 nm; green). The intensity of 
J‑aggregate:J‑monomer (red: green) ratio is an indicator of 
the MMP. High ratios indicate high MMP and vice versa. 
MMP values were stated as JC‑1 ratio (J‑aggregate:J‑monomers 
ratio) of the supernatant of hippocampus homogenates.[62,70,79]

Evaluation of histomorphological changes

For evaluation of histological changes, a fixation process 
was carried out using 4% paraformaldehyde for perfusion 
throughout the vascular system based on previous standard 
studies to obtain the finest possible brain conservation for 
histological evaluations.[80,81] The hippocampus of all the 
animals in the groups (all 10 animals in each group) was 
used for hematoxylin and eosin (H and E) staining. All 
hippocampus samples were washed with normal saline and 
fixed in paraformaldehyde (12% w: v). Subsequently, fixed 
tissues were dehydrated with ethanol and then embedded 
in paraffin. The tissues of all 10 animals in each group 
were paraffinized, and one section was prepared from each 
of them for preparing a slide. In the next step, 5 μm thick 
sections were generated, and slides were prepared; thus, 

we prepared 10 slides for each group. In the final stage, 
the slides were stained with H and E, and one image 
with 400× and/or 100× magnification was prepared from 
each slide. The aforementioned images were analyzed by 
using morphometry software (Optikavision pro, Italy), and 
quality (changes of cell shapes) and quantity (cell density) 
alterations of all images were evaluated in regions of 
1.30 mm of the hippocampal subfield.[82‑84]

Statistical analysis

All data were collected and analyzed using special 
statistical software, Graph Pad PRISM v.7 (CA, USA). 
Mean ± standard error (SEM) was considered for sets 
of each data in each experimental group. First, the 
normality of continuous variables was assessed using 
the Kolmogorov–Smirnov test. Second, homogeneity of 
variances between two groups or among more than two 
groups was evaluated by the Leven’s test or the Bartlett’s 
test, respectively. The results of these tests showed 
the normality of data and indicate that variances were 
homogeneous between tested groups. Then, differences 
between the sham and treatment (experimental) groups 
were measured with ANOVA, and differences between 
each group were compared by use of the Tukey posttest. 
Values of P < 0.05 were considered as significant.

Results
Results of MIN effects against TRA‑induced OFT 
behavior alteration

The data from all experiments in this study were analyzed 
using a one‑way ANOVA F‑test with (5,54) degrees 
of freedom. The number in parentheses after each 
experimental parameter is the F ratio followed by the 
P value. TRA with doses of 50 mg/kg caused a decrease in 
ambulation distances (53.87; P < 0.05) and rearing number 
(3.400; P < 0.05) and also attenuated the time spent in the 
central square (38.47; P < 0.05) and number of central 
square entries (3.295; P < 0.05) when compared to the 
sham group [Table 1]. In contrast, administration of MIN 
(20, 40, and 60 mg/kg) improved the number of ambulation 
distances (53.87; P < 0.05) and time spent in the central 

Table 1: Effects of various doses of minocycline on tramadol‑induced open field exploratory and anxiety‑like behavior 
in rats

Groups Ambulation 
distance (cm)

Central square 
entries (number)

Time spent in 
central square (sec)

Number 
of rearing

Sham 364±16 31±5 182±16 18±3
Tramadol (50 mg/kg) 105±14a 11±2a 35±6a 4±1a

Tramadol (50 mg/kg) + MIN (20 mg/kg) 145±12b 17±1 71±8b 13±2
Tramadol (50 mg/kg) + MIN (40 mg/kg) 204±12b,d 22±1b 109±4b,d 13±1
Tramadol (50 mg/kg) + MIN (60 mg/kg) 289±17b,c 25±2b 149±15b,c 15±3b

MIN (60 mg/kg) 354±10 27±2 191±3 17±2
All data are given as Mean±SEM, (n=10). aShows significant difference in relation to sham group (P<0.05). bShows significant difference 
in relation to tramadol (P<0.05). cShows significant difference in relation to tramadol in combination with MIN (40 mg/kg) and or MIN 
(20 mg/kg) (P<0.05). dShows significant difference in relation to tramadol in combination with MIN (20 mg/kg) (P<0.05). MIN: minocycline
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square (38.47; P < 0.05) when compared to TRA‑treated 
animals (50 mg/kg) [Table 1]. Administration of MIN (40 and 
60 mg/kg) caused increases in central square entries and 
also (60 mg/kg) in rearing number (3.400; P < 0.05) when 
compared to TRA‑treated animals (50 mg/kg) [Table 1]. 
Administration of MIN (60 mg/kg) in TRA‑treated 
rats caused significant changes in ambulation distances 
(53.87; P < 0.05) and the time spent in the central square 
(38.47; P < 0.05) in comparison to TRA in combination with 
MIN at 40 mg/kg or 20 mg/kg [Table 1]. Furthermore, MIN 
at 40 mg/kg in TRA‑treated rats could not induce significant 
changes in ambulation distances and the time spent in the 
central square behavior in comparison to TRA in combination 
with MIN at 20 mg/kg [Table 1]. There were no significant 
changes regarding central square entries and rearing 
behavior between groups undergoing treatment with TRA 
in combination with MIN at 20, 40, or 60 mg/kg [Table 1]. 
Finally, MIN alone (60 mg/kg) did not change the OFT 
behaviors when compared to the sham group [Table 1].

Results of MIN effects against TRA‑induced antioxidant 
enzymes and TAC

TRA (50 mg/kg) decreased the level of TAC (6.835; 
P < 0.05) and attenuated the activity of antioxidant enzymes 
such as SOD (4.349; P < 0.05), GPX (16.41; P < 0.05), and 
GSR (4.238; P < 0.05) activity when compared to the sham 
group [Table 2]. MIN administration with doses of 40 and 
60 mg/kg meaningfully increased the TAC level (6.835; 
P < 0.05) [Table 2]. MIN administration with 60 mg/kg 
significantly increased SOD (4.349; P < 0.05), GPX (16.41; 
P < 0.05), and GSR (4.238; P < 0.05) activity when 
compared to the TRA‑treated group (50 mg/kg) [Table 2]. 

There were no significant changes in the TAC level or 
SOD, GPX, and GSR activities between groups undergoing 
treatment with TRA in combination with MIN at 20, 40, or 
60 mg/kg [Table 2]. Moreover, MIN (60 mg/kg) alone did 
not alter the MDA level or SOD, GPX, and GSR activities 
when compared to the sham group [Table 2].

Results of MIN effects against TRA‑induced changes in 
GSH and GSSG levels

In comparison to the sham group, TRA administration 
meaningfully attenuated the GSH (12.89; P < 0.05) level 
and elevated GSSG (61.43; P < 0.05) levels [Table 3]. 
In contrast, MIN at all doses decreased the GSSG 
(61.43; P < 0.05) levels and at doses of 40 and 
60 mg/kg increased the GSH level (12.89; P < 0.05) when 
statistically analyzed in comparison to TRA‑only treated 
groups [Table 3]. Administration of MIN at 60 mg/kg 
in TRA‑treated rats caused significant changes in GSH 
(12.89; P < 0.05) [Table 3] in comparison to TRA in 
combination with MIN at 20 mg/kg. In contrast, MIN at 
60 mg/kg or MIN at 20 mg/kg in TRA‑treated rats did 
not show significant changes when compared to the group 
under treatment with TRA and MIN at 40 mg/kg [Table 3].

MIN at 60 mg/kg in TRA‑treated rats caused significant 
changes in GSSG (61.43; P < 0.05) levels in comparison to 
TRA in combination with MIN at 40 or 20 mg/kg [Table 3]. 
However, MIN at 40 mg/kg in TRA‑treated rats did not 
show significant changes when compared to the group 
under treatment with TRA and MIN at 20 mg/kg [Table 3]. 
MIN alone (60 mg/kg) did not affect the GSH or GSSG 
level when compared to the sham group [Table 3].

Table 2: Effects of various doses of minocycline on tramadol‑induced oxidative stress in rats
Groups TAC level (nM/

microgram)
SOD (U/ml/mg 

of protein)
GPX (mU/mg 

of protein)
GSR (mU/mg 

of protein)
Sham 1.9±0.2 92±6.3 142±6 145±6
Tramadol (50 mg/kg) 0.8±0.1a 51±8a 75±3a 96±9a

Tramadol (50 mg/kg) + MIN (20 mg/kg) 1.4±0.1 71±3 92±6 126±6
Tramadol (50 mg/kg) + MIN (40 mg/kg) 1.6±0.1b 76±8 102±8 131±7
Tramadol (50 mg/kg) + MIN (60 mg/kg) 1.8±0.1b 81±8b 112±12b 138±11b

MIN (60 mg/kg) 2±0.3 96±11 154±5 152±15
All data are given as Mean±SEM, (n=10). aShows significant difference in relation to sham group (P<0.05). bShows significant difference in 
relation to tramadol (P<0.05). MIN: Minocycline

Table 3: Effects of various doses of minocycline on tramadol‑induced GSH and GSSG content in tramadol‑treated rats
Groups GSH (nmol/mg protein) GSSG (nmol/mg protein) GSH/GSSG
Sham 105.7±9.1 2.43±0.61 43
Tramadol (50 mg/kg) 31.4±7.1 a 74±6a 0.42a

Tramadol (50 mg/kg) + MIN (20 mg/kg) 49.8±8.6 43±5b 1.13b

Tramadol (50 mg/kg) + MIN (40 mg/kg) 68.6±9.2b 31±3b 2.9b

Tramadol (50 mg/kg) + MIN (60 mg/kg) 89.4±8.2b,d 14±2b,c 6.3b

MIN (60 mg/kg) 102.4±7.6 3.1±0.5 34
All data are given as Mean±SEM, (n=10). aShows significant difference in relation to sham group (P<0.05). bShows significant difference 
in relation to tramadol (P<0.05). cShows significant difference in relation to tramadol in combination with MIN (40 mg/kg) and or MIN 
(20 mg/kg) (P<0.05). dShows significant difference in relation to tramadol in combination with MIN (20 mg/kg) (P<0.05). MIN: minocycline
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Results of MIN effects against TRA‑induced changes in 
the levels of ROS, MDA, and H2O2

TRA (50 mg/kg) significantly elevated H2O2 (6.084; 
P < 0.05), ROS (12.20; P < 0.05), and 
MDA (18.10; P < 0.05) when compared to the sham 
group [Figure 3a‑c]. MIN (40 and 60 mg/kg), in 
comparison to TRA‑treated rats, reduced the ROS (12.20; 
P < 0.05) and in doses of 20, 40, and 60 mg/kg reduced 
the MDA level (18.10; P < 0.05) [Figure 3a and b]. MIN 
at 60 mg/kg, in comparison to TRA‑treated rats, also 
reduced the H2O2 (6.084; P < 0.05) level [Figure 3c]; 
there were no significant changes in groups treated 
with MIN at 20 or 40 mg/kg. Administration of MIN 
at 60 mg/kg in TRA‑treated rats caused significant 
changes in ROS (12.20; P < 0.05) and MDA (18.10; 
P < 0.05) in comparison to TRA in combination with 
MIN at 20 mg/kg [Figure 3a and b], whereas MIN at 
40 mg/kg in TRA‑treated rats could not induce significant 
changes in ROS and MDA level in comparison to 
TRA in combination with MIN at 20 or 60 mg/kg 
[Figure 3a and b].There were no significant changes in 
H2O2 levels between groups under treatment with TRA 
in combination with MIN at 20, 40, and 60 mg/kg 
[Figure 3c]. MIN alone could not change ROS, MDA, 
and H2O2 levels [Figure 3a and b].

Results of MIN effects against TRA‑induced changes in 
inflammatory (TNF and IL1B) biomarkers

Treatment of animals with TRA (50 mg/kg) significantly 
elevated the IL1B (44.48; P < 0.05) and TNF (32.01; 
P < 0.05) levels as inflammatory biomarkers when 
compared to the sham group [Figure 4a and b]. MIN 
at 20, 40, and 60 mg/kg, in comparison to TRA‑treated 
rats, reduced IL1B (44.48; P < 0.001) and TNF (32.01; 
P < 0.001) levels [Figure 4a and b]. Administration of 
MIN at 60 mg/kg in TRA‑treated rats caused significant 
changes in both IL1B (44.48; P < 0.05) and TNF (32.01; 
P < 0.05) levels in comparison to TRA in combination 
with MIN at 20 or 40 mg/kg [Figure 4a and b]. In contrast, 
MIN at 40 mg/kg in TRA‑treated rats could not induce 
significant changes in TNF and IL1B level in comparison 
to TRA in combination with MIN at 20 or 60 mg/
kg [Figure 4a and b]. MIN alone at the indicated doses 
could not change the levels of these proinflammatory 
biomarkers [Figure 4a and b].

Results of MIN effects against TRA‑induced changes in 
apoptosis (BAX, BCL2, and CASP3) biomarkers

TRA (50 mg/kg) significantly elevated BAX (44.43; 
P < 0.05) and CASP3 (11.23; P < 0.05) levels, increased 
the BAX: BCL2 ratio (2.636; P < 0.05), and reduced the 

Figure 3: Oxidation effects of TRA and MIN. Alterations of ROS (a), MDA (b) and H2O2 (c) in hippocampus in sham group, and groups treated with 50 mg/kg 
of TRA and 20, 40 and 60 mg/kg of MIN in combination with tramadol. All data are expressed as Mean ± SEM (n = 10). # P < 0.05 vs. Sham group. * P < 0.05 
vs 50 mg/kg of tramadol. ¥ P < 0.05 vs tramadol in combination with MIN (20 mg/kg). The number of animals in each group of rats was 10, each of which 
was evaluated once. Therefore, the number of replicates and experiments was one, and the average results of the 10 animals are shown above. TRA: 
tramadol, MIN: minocycline
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BCL2 (30.65; P < 0.05) levels when compared to the 
sham group [Figure 5a‑d]. MIN (20, 40, and 60 mg/kg), 
in comparison to TRA‑treated rats, reduced BAX (44.43; 
P < 0.05) and CASP3 (11.23; P < 0.05) and elevated 
BCL2 (30.65; P < 0.05) levels when compared to the 
TRA‑treated group [Figure 5a‑c]. MIN (40 and 60 mg/kg), 
in comparison to TRA‑treated rats, reduced the BAX: 
BCL2 ratio (2.636; P < 0.05) when compared to the 
TRA‑treated group [Figure 5d]. Administration of MIN at 
60 mg/kg in TRA‑treated rats caused significant changes 
in BAX (44.43; P < 0.05) and BCL2 (30.65; P < 0.05) 
levels in comparison to TRA in combination with MIN at 
20 mg/kg [Figure 5a and b]. In contrast, MIN at 40 mg/
kg in TRA‑treated rats could not induce significant 
changes in the BAX and BCL2 levels in comparison 
to TRA in combination with MIN at 20 or 60 mg/kg 
[Figure 5a and b]. There were no significant changes in 
the CASP3 level and BAX: BCL2 ratio between groups 
under treatment with TRA in combination with MIN at 
20, 40, or 60 mg/kg [Figure 5c and d]. MIN alone could 
not change the levels of BAX, BCL2, CASP3, and BAX: 
BCL2 ratio [Figure 5a‑d].

Results of MIN effects against TRA‑induced changes in 
mitochondrial enzymatic activity

In comparison to the sham group, TRA administration 
meaningfully attenuated the activity of mitochondrial 
complexes I, II, III, and IV [5.230 for complex I, 10.59 

Figure 4: Changes in cytokines in response to TRA and MIN treatment. 
Alterations of  the  expression/level  (ELISA) of  TNF  (a)  and  IL1B  (b)  in 
hippocampi in the sham group, and groups treated with 50 mg/kg of TRA and 
20, 40 and 60 mg/kg of MIN in combination with tramadol. All data are expressed 
as Mean ± SEM (n = 10). # P < 0.05 vs. Sham group. * P < 0.05 vs 50 mg/kg of 
tramadol. £ P < 0.05 vs tramadol in combination with MIN (20 mg/kg) and or 
tramadol in combination with MIN (40 mg/kg). The number of animals in each 
group was 10 rat, each of which was evaluated once. Therefore, the number 
of replication and experiment was once, and the average results of their 10 
animals are reported in the above table. TRA: tramadol, MIN: minocycline

b

a

Figure 5: Changes in apoptotic proteins in response to TRA and MIN. Alterations of expression/levels (ELISA) of (a) BAX, (b) BCL2, (c) CASP3, and (d) BAX: 
BCL2 ratio in hippocampus in the sham group, and groups treated with 50 mg/kg of TRA and 20, 40 and 60 mg/kg of MIN in combination with tramadol. 
All data are expressed as Mean ± SEM (n = 10). # P < 0.05 vs. Sham group. * P < 0.05 vs 50 mg/kg of tramadol. ¥ P < 0.05 vs tramadol in combination with 
MIN (20 mg/kg). The number of animals in each group of rats was 10, each of which was evaluated once. Therefore, the number of replicates and experiments 
was one, and the average results of the 10 animals are reported above. TRA: tramadol, MIN: minocycline
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for complex II, 7.663 for complex III, and 4.586 for 
complex IV; P < 0.05; Figure 6a‑d] in the hippocampus. 
MIN at 60 mg/kg, in contrast, significantly elevated 
mitochondrial complexes I and IV [5.230 for complex 
I and 4.586 for complex IV; P < 0.05; Figure 6a and d] 
activity when compared to TRA‑treated rats. MIN at 40 
and 60 mg/kg also significantly elevated mitochondrial 
complexes II and III [10.59 for complex II and 7.663 
for complex III; P < 0.001; Figure 6b and c] activities 
when compared to TRA‑treated rats. Administration of 
MIN (60 mg/kg) in TRA‑treated rats caused significant 
changes in mitochondrial complex I [5.230; P < 0.05; 
Figure 6a] in comparison to TRA in combination with MIN 
at 20 mg/kg. MIN at 40 mg/kg in TRA‑treated rats could not 
induce significant changes in the activity of mitochondrial 
complex I compared to TRA in combination with MIN 
at 20 or 60 mg/kg [Figure 6a]. There were no significant 
changes in mitochondrial complexes II, III, and IV between 
groups under treatment with TRA in combination with 
MIN at 20, 40, or 60 mg/kg [Figure 6b–d]. Treatment with 
MIN alone (60 mg/kg) did not alter the enzymatic activity 
of any of these mitochondrial complexes [Figure 6a–d].

Results of MIN effects against TRA‑induced changes 
in ATP level and mitochondrial membrane potential 
(MMP)

The JC‑1 assay showed that TRA administration 
meaningfully reduced the mitochondrial membrane 

potential (18.75; P < 0.05) and decreased ATP 
levels (7.495; P < 0.05) when compared to the sham 
groupb [Figure 7a and b]. Conversely, MIN (40 and 
60 mg/kg) significantly increased mitochondrial membrane 
potential (18.75; P < 0.001) and also MIN at 60 mg/kg 
significantly increased ATP levels (7.495; P < 0.05) when 
compared to TRA‑treated rats [Figure 7a and 7b]. There 
were no significant changes in ATP level or mitochondrial 
membrane potential between groups under treatment with 
TRA in combination with MIN at 20, 40, or 60 mg/kg 
[Figure 7a and b]. Treatment with MIN alone (60 mg/kg) 
did not alter the mitochondrial membrane potential or ATP 
level [Figure 7a and b].

Results of MIN effects against TRA‑induced 
histopathological changes

TRA (50 mg/kg) induced significant cell shrinkage and 
degeneration in granular cells of the DG and pyramidal 
cells of the CA1 area of the hippocampus. TRA also 
reduced cell number and density of the DG (18.10; 
P < 0.05) and CA1 (18.46; P < 0.05) when compared 
to the sham group [Figures 8 and 9] [Table 4]. MIN at 
40 and 60 mg/kg in the DG area and MIN at 60 mg/kg 
in the CA1 areas meaningfully reduced TRA‑induced 
cell degeneration and reduction of cell density (18.10; 
P < 0.05 for the DG and 18.46 for CA1; P < 0.05) in 
granular cells and pyramidal cells when compared to the 
TRA‑only treated group [Figures 8 and 9] [Table 4]. 

Figure 6: The effects of TRA and MIN treatment on the activities of mitochondrial complexes. Alterations of (a) complex I, (b) complex II, (c) complex III, 
and (d) and complex IV activity in hippocampus in sham group, and groups treated with 50 mg/kg of TRA and 20, 40 and 60 mg/kg of MIN in combination 
with tramadol. All data are expressed as Mean ± SEM (n = 10). # P < 0.05 vs. Sham group. * P < 0.05 vs 50 mg/kg of tramadol. ¥ P < 0.05 vs tramadol in 
combination with MIN (20 mg/kg). The number of animals in each group of rats was 10, each of which was evaluated once. Therefore, the number of 
replicates and experiments was one, and the average results of the 10 animals are reported above. TRA: tramadol, MIN: minocycline
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There were no significant changes in quantitative and 
qualitative histological changes between groups under 
treatment with TRA in combination with MIN at 20, 40, 
or 60 mg/kg [Figures 8 and 9] [Table 4]. Treatment with 
MIN alone (60 mg/kg) did not alter the hippocampal 
histopathological status [Figures 8 and 9] [Table 4].

Discussion
The current study for the first time evaluated the 
neuroprotective role of MIN against TRA‑promoted 
neurodegeneration. According to our data, MIN 

neuroprotective properties against TRA‑induced 
neurotoxicity and neurodegeneration in the hippocampus 
occurred via reduction and inhibition of apoptosis, oxidative 
stress, mitochondrial dysfunction, and inflammation. 
The data indicate that MIN treatment could inhibit 
TRA‑induced neurobehavioral changes such as anxiety and 
motor activity disturbances. In addition, according to the 
present study, MIN could attenuate TRA‑induced oxidative 
stress and decrease MDA, H2O2, ROS, and GSSG levels; 
caused increases of SOD, GPX, and GSR activities; and 
elevated GSH and TAC levels. Based on our data, MIN 
caused a reduction of TRA‑induced inflammation and 
reduced TNF and IL1B levels. MIN treatment could also 
inhibit TRA‑induced apoptosis and inhibit TRA‑induced 
BAX and CASP3 elevation and BCL2 level reduction. 
MIN treatment also reduced TRA‑induced mitochondrial 
dysfunction. Furthermore, MIN could increase the activity 
of mitochondrial complexes I, II, III, and IV and resulted 
in a restoration of mitochondrial membrane potential and 
ATP level in TRA‑treated rats. MIN also restored the 
histomorphological sequelae of TRA in both the CA1 and 
DG areas of the hippocampus.

The results of the present study indicated that 50 mg/kg 
of TRA caused decreases in the time spent in the central 
square, counts of central square entries, rearing number, 
and ambulation distances in the OFT. TRA is an analgesic 
remedy which has sequelae such as mood and behavioral 
disturbances, hallucination, and euphoria.[1,2] Current results 
confirm that TRA administration can cause changes in mood 
and anxiety‑like behaviors. Previous data indicated that 
although acute administration of TRA can reduce anxiety 
and depressive‑like behavior, its long‑term administration or 
abuse can cause symptoms of anxiety and depression.[85,86] 
Some of these effects of TRA are likely explained due to 
its effects on the brain monoamine neurotransmitter; TRA 
abuse can cause depletion of serotonin, norepinephrine, 
GABA, and dopamine, and this phenomenon probably is 
responsible for its malicious effects on mood and motor 
activity behaviors.[15,87] In addition, chronic abuses of TRA 
can cause cognition impairment, confirming our data about 
its effects on behavioral performances.[88,89]

Conversely, our data indicated that MIN administration, 
at various doses, in TRA‑dependent rats could cause 
reduction of TRA‑induced motor‑related behavior in the 
OFT. Furthermore, MIN administration by itself could not 
change the OFT behaviors. These data can be considered 
along with the properties of MIN, which indicated 
that MIN administration can reduce depressive and 
anxiety‑like behavior in multiple types of neurobehavioral 
disturbances.[90‑92] MIN is an antibiotic from the tetracycline 
group, which has protective neurobehavioral and 
neurochemical effects in neuronal cells.[19‑21] In addition, 
this part of the study can be viewed along with the basic 
concept that showed that MIN has a powerful potential 
for modulation of serotonin, norepinephrine, GABA, and 

Table 4: Effects of various doses of minocycline on 
tramadol‑induced DG and CA1 cell count in rat 

hippocampus
Groups Number/

mm in DG
Number/

mm in CA1
Sham 671±28 356±31
Tramadol (50 mg/kg) 426±28a 123±17a

Tramadol (50 mg/kg) + MIN (20 mg/kg) 512±24 178±15
Tramadol (50 mg/kg) + MIN (40 mg/kg) 548±22b 205±16
Tramadol (50 mg/kg) + MIN (60 mg/kg) 608±18b 255±19b

MIN (60 mg/kg) 688±19 309±18
All data are given as Mean±SEM, (n=10). aShows significant 
difference in relation to sham group (P<0.05). bShows significant 
difference in relation to tramadol (P<0.05). MIN: Minocycline

Figure 7: Change in mitochondrial function in response to TRA and 
MIN. (a) Alterations of adenosine triphosphate (ATP) and (b) mitochondrial 
membrane potential (MMP) in hippocampi in the sham group, and groups 
treated with 50 mg/kg of TRA and 20, 40 and 60 mg/kg of MIN in combination 
with tramadol. All data are expressed as Mean ± SEM (n = 10). # P < 0.05 vs. 
Sham group. * P < 0.05 vs 50 mg/kg of tramadol. The number of animals in 
each group of rats was 10, each of which was evaluated once. Therefore, 
the number of replicates and experiments was one, and the average results 
of the 10 animals are reported above. TRA: tramadol, MIN: minocycline
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dopamine, and probably this mechanism can modulate 
behavioral disturbances.[93‑95] The results of this part of 
our study also are consistent with previous experimental 
and clinical studies about the protective effects of MIN 
against motor activity disturbances.[24,27,33,92,96] These results 
have been so effective that in the treatment strategies 
for mood and motor activity management, minocycline 
is considered as prepositional therapy for these types 
of disorders.[24,27,33,92,96] Also, our data indicated that 
the role of MIN in inhibition of TRA‑induced anxiety 
and motor activity disorder is dose dependent; the data 
from the current study indicated that administration of 
MIN improved the number of ambulation distances and 
time spent in the central square (20, 40, and 60 mg/kg), 
central square entries (40 and 60 mg/kg), and also rearing 
number (60 mg/kg). These results can be interpreted 
as indicating that high doses of minocycline can have 
antianxiety effects, but medium and low doses can stabilize 
mood and improve movement disorders. Of course, these 
results and the effects of different doses have not been 
directly evaluated, but several studies have indirectly 
confirmed the effect of different doses of this compound 
against multiple behavioral disorders.[50,92,97,98]

In spites of all the data about the effect of MIN for the 
management of mood and motor activity disorders, the 
protective effects of this agent for the management of 

TRA‑induced neurobehavioral disturbances were not 
approved and the current study has therefore tried to 
evaluate this capability of MIN; it seems these results can 
be a clue as to the effectiveness of MIN against behavioral 
disorders caused by drug abuse.

The molecular aspects of our data indicated that TRA 
administration can cause activation of oxidative stress 
events, and this was characterized by elevation of MDA, 
H2O2, and ROS levels and reduction of activity of 
antioxidant enzymes such as GPX, GSR, and SOD2 along 
with decreases of TAC. These data are consistent with 
previous results, which demonstrated that a large part 
of the malicious and harmful properties of TRA in brain 
sections is due to the occurrence of oxidative stress.[15,99] 
According to previous work, TRA administration can cause 
activation of lipid peroxidation and also production of H2O2 
and ROS.[11,15,99,100]

Along these lines, TRA administration can lower antioxidant 
activity and, probably via this mechanism, can induce 
neuronal cell damage and neurodegeneration.[14,15,99,101] 
These results confirm our data about TRA’s potent effects in 
reduction of total antioxidant capacity and other antioxidant 
enzyme activity in the hippocampus. It seems that depletion 
of the antioxidant defense plays a part in TRA‑induced 
neurodegeneration.[14,15,18,99,101,102] Based on general principles 

Figure 8: Histological changes in DG area of rat hippocampus. Low power images (magnification × 100) indicted as (A) sham, (B) group received 50 mg/kg 
of tramadol, (C, D and E) groups treated with 50 mg/kg of TRA and 20, 40 and 60 mg/kg of MIN, respectively, in combination with TRA and (F) group received 
MIN alone (60 mg/kg) mg/kg. Also, high power images (magnification × 400) are shown as A1 to F1. Orange arrows show damaged or dead cells (scale 
bar: 100 μm)
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of cell biology, there must be a balance between the 
production of free radicals, active species of oxygen and 
nitrogen, and activity of antioxidant agents and antioxidant 
enzymes, and any factor that can disrupt this balance 
provides the basis for cell dysfunction or death. We interpret 
our findings to indicate that TRA in the toxic and high 
doses used in the current study can inactivate antioxidant 
pathways. By inactivating antioxidant enzymes such as 
SOD, GPX, and GSR, it causes the increase of oxidant 
agents such as MDA, free radicals such as H2O2, and active 
species of oxygen and nitrogen such ROS. Furthermore, 
the present study showed that TRA can play its destructive 
role by reducing the total antioxidant capacity.[9,103] TAC 
is considered as the main biomarker for evaluation of the 
cumulative action of all antioxidants present within the 
cell.[104] Thus, in the present study, the reduction of TAC 
confirms the effects of tramadol on the reduction of SOD, 
GPX, and GSR enzymes and also GSH level.[9,103]

Thus, by evaluating changes of TAC, we can more 
confidently confirm the role of TRA in reducing 
antioxidants.[11,12,15] Along these lines, it can be speculated 
that TRA by reducing the SOD, GPX, and GSR enzymes 
and also GSH level and overall antioxidant capacity 
provides the opportunity for the activation of oxidant 
agents such as MDA, H2O2, and ROS and thus exerts its 
neurodegenerative effects.[12,15]

In contrast, administration of 20, 40, and 60 mg/kg of MIN 
decreased the TRA‑induced elevation in H2O2, MDA, and 
ROS levels and also inhibited the reduction of antioxidant 
enzymes such as GPX, GSR, and SOD activity as well 
as TAC. Also, MIN alone could not change any of these 
antioxidant and oxidative biomarkers. These data are 
consistent with previous data from our lab and others, 
which demonstrates MIN’s neuroprotective properties 
in the reduction or inhibition of lipid peroxidation 
and the formation of reactive oxygen species and free 
radicals.[33,38,105] Previous work also indicated that MIN’s 
neuroprotective effectiveness was mediated via reversing 
or restoring the activity of GPX, GSR, and SOD activity 
in neuronal cells.[31,38,95,106,107] The effects of MIN in 
the activation of TAC and modulation of the redox 
system in neurodegenerative events were demonstrated 
previously.[31,107,108] As mentioned above, the TAC 
level provides an estimation of the overall antioxidant 
components in a cell.[104] Thus, increasing the level of TAC 
with multiple doses of MIN can enhance the antioxidant 
effects of this compound as well as its positive effects on 
GPX, GSR, and SOD activity. Based on previous studies, 
the TAC level provides a general view of the antioxidant 
activity of each neuroprotective compound. Therefore, the 
results of the present study can be interpreted to mean that 
MIN can increase the total antioxidant level/capacity of 

Figure 9: Histological changes in the CA1 area of rat hippocampus. Low power images (magnification × 100) indicted as (A) sham, (B) group received 
50 mg/kg of tramadol, (C, D and E) groups treated with 50 mg/kg of TRA and 20, 40 and 60 mg/kg, respectively, of MIN in combination with TRA and 
(F) group received MIN alone (60 mg/kg) mg/kg. Also high power images (magnification × 400) are shown as A1‑F1. Orange arrows show damaged or 
dead cells (scale bar: 100 μm)
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the cell by increasing antioxidant enzyme (GPX, GSR, and 
SOD) activity, and through this mechanism, it can reduce 
oxidant agents such as H2O2, MDA, and ROS.[32,33,109,110] In 
support of these results, a significant relationship between 
the activity of GPX, GSR, and SOD and the TAC level is 
observed.[104,109,111]

Thus, it can be considered that a large part of the 
neuroprotective properties of MIN with regard to 
neurodegenerative disease or disorder is due to the 
inhibition of oxidative stress and potentiation of antioxidant 
defenses and thus activation of TAC.[31,38,95,106,107] In other 
words, increasing TAC levels is the key parameter to the 
neuroprotective role of MIN against oxidative damage and 
injuries, which are induced by TRA.[31,49] In spite of all these 
direct and indirect lines of evidence regarding the role of 
MIN in the inhibition of oxidative stress and modulation of 
the redox system, the protective effects of this neuroprotective 
antibiotic in the management of TRA‑induced oxidative 
stress in the hippocampus were not approved. Based on the 
current study, the indicated outcomes suggest the efficiency 
of MIN against neurochemical disorders caused by drug 
abuse such as with TRA.

Another debatable and important issue is that according to 
our data, MIN administration with 60 mg/kg significantly 
increased SOD, GPX, and GSR and also with doses of 
40 and 60 mg/kg caused increases of TAC in TRA‑treated 
rats. Furthermore, MIN with doses of 20, 40, and 60 mg/kg 
caused reduction of H2O2, MDA, and ROS levels. From these 
results, two relatively complete conclusions can be made. 
First, the antioxidant effects of MIN are dose dependents 
and occur more in medium and high doses. Second, some 
part of MIN’s effects against oxidative biomarkers such 
as H2O2, MDA, and ROS are not related to the effects of 
the mentioned antioxidants and the TAC system because 
MIN, even at low doses, can probably inhibit H2O2, MDA, 
and ROS levels, which indicates the role and involvement 
of various miscellaneous protective pathways in the 
action of MIN antioxidant against TRA‑induced oxidative 
events,[21,31,112] confirming the results of previous studies.[31,35]

Our results also indicate that administration of TRA could 
reduce the level of the protective form of glutathione (GSH) 
and also caused increases in the level of the harmful 
form (GSSG) in the hippocampus. In contrast, MIN at 
multiple doses could decrease GSSG levels and also 
increased GSH content in TRA‑dependent rats, whereas 
the administration of 60 mg/kg of minocycline alone could 
not affect significant changes in GSH and GSSG. Based on 
previous results, TRA, via increases of GSSG and reduction 
of GSH, can trigger neuronal cell death.[101,113] In addition, 
TRA neurodegenerative and neurotoxic effects are mediated 
via disturbances of the glutathione cycle.[4] Conversely, 
MIN, probably via attenuation of GSSG and elevation of 
GSH, can protect neuronal cells from degenerative signals 
and inhibit neurodegenerative events.[114‑116] Thus, it can be 

considered that MIN by triggering GSR activity can enhance 
the GSSG‑to‑GSH conversion and by this effect prevents 
TRA‑triggered disturbances in the glutathione cycle.[114‑116] 
According to our study, MIN effects on GSH and GSSG are 
dose dependent; this agent in all doses decreased the GSSG 
level and at doses of 40 and 60 mg/kg increased the GSH 
level. This can be interpreted to mean that minocycline in 
low to high doses can have antioxidant effects and reduce the 
destructive forms of glutathione (GSSG), whereas in medium 
to high doses, it can exert its neuroprotective role and cause 
the generation of useful forms of glutathione (GSH).[95,114,117] 
Several studies have confirmed the role of low doses of 
minocycline as an antioxidant and high doses of minocycline 
as a neuroprotective agent, which is consistent with the 
results of this part of our study.[118,119] This result can give new 
insight about the role of MIN against drug abuse‑induced 
glutathione dysfunction and can suggest new mechanisms 
for MIN neuroprotective properties.[114‑116]

Other parts of our study indicated that administration of TRA 
significantly increased the level of proinflammatory cytokines 
such as IL1B and TNF, whereas MIN administration could 
inhibit TRA‑induced neuro‑inflammation; however, MIN 
alone could not change the TNF or IL1B levels. These 
data are consistent with previous results which show 
that TRA can induce inflammation in neuronal cells and 
causes activation of the cytokine pathway and by this 
mechanism initiates neurodegeneration.[18,120,121] A similar 
study indicated that TRA administration can cause the 
elevation of serum proinflammatory cytokines (TNF and 
IL6) and overexpression of NFKB/NF‑κB, NOS2/iNOS, 
TNF, and IL6 in rat brains.[15] In contrast, findings about 
the anti‑inflammatory and immunomodulatory effects of 
MIN demonstrated that this neuroprotective agent causes 
the attenuation of cytokine formation/production and by this 
mechanism defends neuronal cells from neurodegenerative 
events.[29,122,123] Along these lines, MIN administration can 
inhibit alcohol‑induced neuro‑inflammation.[124] Another 
study revealed that levels of GFAP (glial fibrillary acidic 
protein), AIF1/IBA1 (allograft inflammatory factor 1), 
and IL6 as inflammatory biomarkers are significantly 
reduced in a neurodegenerative mouse model after MIN 
administration.[125] Also, the dose‑dependent role of 
minocycline as an anti‑inflammatory agent in reducing 
inflammatory events with low or high doses has been the 
focus of previous studies,[126,127] and our study also confirms 
this effect in the inflammation induction model caused 
by tramadol. In other words, it has been determined that 
minocycline has an anti‑inflammatory role even in low 
doses, and in high doses, it will have both anti‑inflammatory 
and anti‑oxidant effects.[23,112] Although some of these 
MIN effects as a neuro‑inflammatory inhibitor or as an 
inflammatory modulator were approved previously, its 
protective effects as a modulator of neuro‑inflammation 
in TRA‑addicted subjects were not indicated; thus, the 
current study is important in demonstrating the effects 
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of MIN against TRA‑induced neuro‑inflammation in 
the hippocampus and can clarify the neurochemical 
consequences of both MIN and TRA administration.

Our results indicate that TRA significantly attenuates 
the enzymatic activity of mitochondrial complexes I, 
II, III, and IV in the mitochondrial respiratory chain 
in the hippocampus. Indeed, previous studies suggest 
that dysfunction in mitochondrial respiratory enzymes 
are involved in TRA‑induced neurodegeneration and 
neurotoxicity.[8,128] Our results also indicate that TRA 
administration dramatically decreased mitochondrial 
membrane potential in hippocampus tissue; this result 
confirms the effects of TRA on mitochondrial respiratory 
chain enzyme activities and also indicates that the TRA effect 
on mitochondrial dysfunction is probably one of the main 
causes of TRA‑induced neurodegeneration.[8,128] In addition, 
it seems that the detrimental role of TRA on mitochondrial 
function can cause neuro‑inflammation, oxidative stress, and 
apoptosis.[113,129‑132] These effects of TRA on mitochondrial 
respiratory enzymes and mitochondrial membrane 
potential can help explain our data, which show that TRA 
administration caused dysfunction in ATP synthesis, which 
led to reduction of the ATP level. The effects of TRA on 
mitochondrial respiratory chain enzymes can further lead 
to impairment of the mitochondrial membrane potential 
and reduction of ATP level, which consequently cause 
neurodegeneration.[113,129‑134] As discussed above, hippocampal 
dysfunction of mitochondria in response to TRA was not 
previously evaluated, but indirect evidence indicated that 
mitochondria are responsible for the neuro‑pathological 
events caused by TRA administration.[113,129‑134] Thus, it can 
be suggested that mitochondrial dysfunction can be one of 
the key factors in TRA‑promoted neurodegeneration.

Our data also indicated that MIN administration at the 
indicated doses could cause activation of mitochondrial 
complexes I, II, III, and IV in the hippocampus of TRA‑treated 
animals. This is consistent with studies which show the 
efficacy of MIN to improve mitochondrial function.[42,135‑137] 
MIN‑dependent cytoprotection, including neuroprotection, is 
mediated via activation of mitochondrial function.[42,138] We 
found that MIN administration could restore mitochondrial 
membrane potential and also resulted in elevation of the 
ATP level in the hippocampus of TRA‑dependent rats. 
Furthermore, MIN alone did not change the mitochondrial 
function parameters. Previous studies indicated that 
minocycline plays a critical role in mitochondrial biogenesis 
and by regulation of mitochondrial homeostasis inhibits 
occurrences of apoptosis, oxidative stress, and inflammation 
and thus manages neurodegenerative events.[39,95,109,137,139] 
However, the participation of MIN in other mitochondrial 
activities is still unclear and needs further study, although 
mitochondria functions appear to be critical for MIN’s 
neuroprotective effects.[136,139,140] Our study suggests that MIN 
activation of mitochondrial complexes I, II, III, IV and the 
ATP synthase and restoration of the membrane potential 

could reduce neuro‑inflammation and increase anti‑oxidative 
defenses; these effects in turn can reduce the formation 
of free radicals, which leads to inhibition of neuronal cell 
death and neurodegeneration in the hippocampal tissue in 
TRA‑addicted rats. Also, these properties of MIN on the 
modulation of nonchemical parameters probably modulate 
TRA‑induced neurobehavioral disturbances such as mood 
and motor activity disease. In spite of all the data about 
the MIN effects as a mitochondrial function modulator, 
its neuroprotective effects in TRA‑induced mitochondrial 
dysfunction were not indicated; thus, our results expand our 
present understanding with regard to the neuroprotective 
effects of MIN in response to certain neurotoxic agents such 
as TRA and propose the potential clinical advantages of 
MIN to restore mitochondrial function in neurodegenerative 
diseases and disorders, especially drug abuse‑induced 
neurodegeneration.[141,142]

Another point to be discussed here is that based on the 
results of the present study, MIN at 60 mg/kg significantly 
elevated mitochondrial complexes I and IV activities and 
also in doses of 40 and 60 mg/kg elevated mitochondrial 
complexes II and III activities. Also, MIN at all mentioned 
doses increased the ATP level and enhanced mitochondrial 
membrane potential. It seems that the results of this part 
of the study further define the role of dose‑dependent 
effects of minocycline in the control of mitochondrial 
function.[136,140,143] Although a direct study that evaluates the 
role of multiple minocycline doses on mitochondrial function 
has not been done, according to the results of the present 
study, and also previous indirect results, it can be concluded 
that minocycline in middle and high doses will play a very 
useful role in strengthening the function of mitochondrial 
enzymes, increasing ATP production and activating the 
potential of the mitochondrial membrane.[41,141,143]

According to the results presented here, TRA caused an 
increase in important apoptotic factors, BAX and CASP3, 
and also reduced the BCL2 level as an anti‑apoptotic 
parameter. TRA‑induced neurotoxicity appears to be 
mediated by occurrences of apoptosis, and this apoptosis 
is one of the malicious outcomes of TRA that result in 
dysregulation of mitochondrial function, oxidative stress 
and inflammation.[15,18,144] Thus, it can be suggested that 
TRA‑promoted apoptosis is one of the main players of 
neurodegenerative events which occurs during TRA abuses 
or chronic administration.[15,18,144] The current study also 
demonstrated that MIN administration could reduce BAX 
and CASP3 and also caused elevation of the BCL2 level. 
Furthermore, MIN alone could not effect significant changes 
with regard to these apoptosis markers. Similar work indicates 
that MIN inhibits BAX activation and CASP3 cleavage, 
and also inhibits nuclear condensation during occurrences 
of some neurodegenerative disorders and diseases.[39,123,145] 
However, the effects of MIN in the management of apoptosis 
and cell death in TRA‑administered subjects was not 
clarified; thus, our results enhance the knowledge about 
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Figure  10: Minocycline  restore TRA‑induced mood and motor  activity,  oxidative stress,  inflammation,  apoptosis mitochondrial  respiratory  enzyme 
dysfunction, mitochondrial membrane potential dysfunction, and ATP synthesis inhibition
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the mechanism of MIN‑mediated neuroprotection 
against neurodegenerative diseases and disorders such 
as TRA‑induced neurodegeneration. Also, based on the 
present study MIN effects on apoptosis biomarkers and its 
anti‑apoptotic function are dose dependent. These results 
can be interpreted as meaning that low to high doses of 
minocycline can have anti‑cell death effects. These results 
and the effects of different doses of MIN on apoptosis have 
not been directly evaluated previously, but several studies 
have indirectly confirmed the effect of different doses of 
this compound against multiple types of cell death signaling 
pathways such as apoptosis.[21,146,147]

For further confirmation and validation of MIN’s cellular 
protection against TRA‑induced neurotoxicity and neuronal 
cell death, we carried out cellular staining and assessed the 
quantitative and qualitative alterations of granular cells in 
the DG and pyramidal cell in the CA1 regions. Our data 
showed that TRA could cause considerable decreases of 
cellular count and quality of cells in both granular (in 
the DG regions) and pyramidal (in the CA1 regions) 
cells of the hippocampus. Conversely, MIN at 40 and 
60 mg/kg in the DG area and MIN at 60 mg/kg in CA1 
areas dramatically reduced the TRA‑induced hippocampal 
cell damage in both quantitative and qualitative aspects. 
These data are consistent with the effects of MIN against 
TRA‑induced apoptosis and cell death[15,18,144] and can be 
interpreted with the dose‑dependent effects of minocycline 
as discussed above. In other words, minocycline in 

medium to high doses can play its anti‑oxidative stress, 
anti‑inflammatory and anti‑cell death role and exert its 
positive effects on pathological features.[148,149] TRA effects 
can be interpreted in light of the conclusion that this agent, 
possibly via activation of mitochondrial dysfunction, 
can cause initiation or triggering of neuro‑inflammation, 
neuronal oxidative‑stress, and apoptosis which lead to 
neuronal cell loss and neuronal damage.[11,150] In contrast, 
MIN inhibits these TRA‑induced processes and can 
promote survival despite the cell damage that results from 
these TRA‑induced neurochemical changes. Previous 
data have also shown that MIN inhibits degeneration 
of hippocampal cells, but the exact signaling pathway 
in this manner remains unknown.[151,152] In spite of the 
effects of MIN in the management of hippocampal cell 
death and apoptosis, its effects in TRA‑addicted subjects 
was not yet evaluated; thus, the current results extend 
our understanding and knowledge about the role of MIN 
and its mechanism as a neuroprotective agent against 
TRA‑induced neurodegeneration or neurotoxicity.

Conclusions
The results of the present study suggest, for the first time, that 
MIN acts as potent neuroprotective agent against TRA‑induced 
neurodegenerative sequelae such as mitochondrial dysfunction, 
neuro‑inflammation, neuronal oxidative stress, disturbances 
in cell defense mechanisms, or apoptosis [Figure 10]. The 
important point is that it cannot be claimed that low doses of 

D
ow

nloaded from
 http://journals.lw

w
.com

/ijom
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 10/22/2024



Gholami, et al.: Minocycline against tramadol‑induced neurodegeneration

International Journal of Preventive Medicine 2024, 15: 47 17

minocycline necessarily have a neuroprotective role, but based 
on the present results, moderate to high doses of this agent can 
definitely play a neuroprotective role by reducing hallmarks 
of neurodegenerative events. Although all these results offer 
a new perspective and novel visions into the explanation 
of mechanisms involved in neurodegeneration induced by 
TRA and the neuroprotection of MIN, it appears that further 
evaluation for the specific neurochemical, molecular, and 
cellular aspects of the mentioned hypotheses and claims need 
to be carried out especially in human subjects.
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