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Introduction
Cardiovascular diseases, encompassing 
various conditions that affect the 
heart and blood vessels, substantially 
contribute to morbidity and mortality, 
imposing a significant financial 
burden.[1] Heart angiogenesis can help in 
the recovery and maintenance of heart 
function.[2] Angiogenesis is the intricate 
process of forming new blood vessels 
from existing ones and is regulated by 
pro‑angiogenic molecules such as vascular 
endothelial growth factor (VEGF), fibroblast 
growth factor (FGF), angiopoietins, 
interleukin‑8 (IL‑8), osteopontin (OPN), 
platelet‑derived growth factor (PDGF), 
transforming growth factor‑alpha (TGF‑α), 
hypoxia‑inducible factor 1 (HIF‑1), 
epidermal growth factor (EGF), hepatocyte 
growth factor (HGF), and anti‑angiogenic 
factors, such as endostatin, angiostatin, and 
thrombospondin‑1 (TSP‑1).[3,4]
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Abstract
Background: Angiogenesis is crucial in the recovery and maintenance of heart function. Irisin 
may mediate the cardiac health‑promoting impact of exercise training. The aim of this study was 
to comparatively assess VEGF gene/protein expression in the heart tissue and correlations with 
serum irisin levels following resistance training, in comparison to exogenous irisin injection. 
Methods: Twenty‑one NMRI mice were randomly assigned to the three group (n = 7 for each group): 
control, resistance exercise, and irisin. Exercised mice, for 8 weeks, three sessions per week and 
four sets of five repeats for each session were considered and mice climbed up a 1‑m‑height ladder 
with a slope of 80 degrees with a weight equal to 30% of mouse’s body weight fastened to their 
tails and gradually increased up twofold of body weight. The Irisin group received 100 µg/kg/week 
irisin for 8 weeks, intraperitoneally. The cardiac expression of the VEGF gene, by real‑time PCR, 
the level of VEGF protein, by IHC (immunohistochemistry) and western blot analysis, and serum 
irisin concentration, by ELISA, were evaluated. Results: The expression of the VEGF gene and 
protein, as well as serum Irisin levels, increased in all experimental mice compared to the control 
group (P < 0.05). Pearson’s correlation coefficient data indicated a positive correlation between 
the analyzed parameters in each group (P < 0.05 and r > 0). Conclusions: There appears to be an 
interaction between resistance exercise and cardiac angiogenesis factors, mediated by irisin. So, irisin 
could be considered in cardiovascular health interventions, aiming to target specific molecules or 
pathways.
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VEGF, belonging to the PDGF supergene 
family, stands as a crucial pro‑angiogenic 
factor. The VEGF‑VEGFR system serves 
as a significant target for angiogenic‑related 
therapies in cancer, neuronal degeneration, 
and ischemic diseases.[5] It is reported that 
the VEGF pathways actively participates 
in angiogenesis in the myocardial 
infarction. VEGF influences the migration, 
proliferation, and decomposition of the 
extracellular matrix of endothelial cells 
in various physiological conditions like 
exercise, embryonic growth, reproductive 
cycles, wound healing, and pathological 
status such as tumor growth, ischemia, and 
pathological hypertrophy of the heart.[5‑7]

Regular exercise training has demonstrated 
the potential to reduce cardiovascular‑
related challenges.[8] Exercise triggers the 
production and release of cytokines and 
other peptides known as myokines, such 
as interleukin‑6 (IL‑6), CXCL‑1, fibroblast 
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growth factor 21 (FGF21), and irisin, which play a pivotal 
role in generating exercise’s effects through their paracrine 
and endocrine actions.[9‑11]

Irisin originates from the proteolytic cleavage of fibronectin 
type III domain‑containing protein 5 (FNDC5), which is 
primarily expressed in skeletal muscles. Research indicates 
notable alterations in irisin concentrations within the blood 
circulation of patients affected by certain cardiovascular 
diseases compared to their healthy counterparts, suggesting 
a newfound role of irisin in cardiac health.[11,12] Studies 
also have demonstrated a substantial surge in irisin levels 
within the cardiac muscle of both young and elderly rats 
following exercise.[13] Additionally, regular exercise or 
irisin supplementation has shown promising improvements 
in post‑myocardial infarction recovery.[14]

Due to its capacity to enhance muscular strength, speed, 
hypertrophy, balance, and coordination, resistance exercise 
has garnered increased attention in the last twenty years. 
Recognized for its numerous health advantages, national 
health bodies such as the American Heart Association 
and the American College of Sports Medicine advocate 
its practice for individuals across various demographics, 
including the elderly and those grappling with 
cardiovascular or neuromuscular conditions.[15,16]

Research findings indicate that resistance exercise induces 
a more pronounced elevation in blood plasma irisin levels 
compared to endurance‑based exercises. The execution 
of resistance exercises has demonstrated a significant 
upsurge in the expression of the FNDC5 gene and irisin 
protein within the hearts.[17] It is shown that irisin has 
an impact on the expression of VEGF in different tissue 
such as skin[18] and skeletal muscles,[13] and potentially 
contributing to the prevention, treatment, and reduction of 
cardiovascular diseases.[11,12,14] On the other hand, several 
signaling pathways can influence the production of VEGF 
such as MAPK (mitogen‑activated protein kinase) and 
muscle hypoxia‑related HIF‑1α expression. It also has been 
shown that MAPK activation and HIF‑1α expression can 
be affected by exercise.[19,20]

Hence, this study aimed to comparatively assess VEGF 
gene/protein expression in the heart tissue and correlations 
with serum Irisin levels following resistance training, in 
comparison to exogenous Irisin injection.

Methods
Animal models and tissue preparation

The current study is experimental research involving 
21 mature mice (NMRI, 5 weeks old, and 18 ± 2 g). 
These mice were housed in standard conditions within 
an animal facility, maintaining a temperature of 21°C, 
a 12:12‑hour light/dark cycle, 50 ± 3% humidity, and 
free access to standard food and water. After a 2‑week 
adaptation period, the mice were randomly divided into 

three groups: control, resistance exercise, and irisin. The 
control group received no intervention, while the exercised 
group underwent a resistance exercise protocol comprising 
three sessions per week, with four sets of five repetitions 
in each session. The protocol began with a weight 
equivalent to 30% of each mouse’s body weight attached 
to their tails, gradually increasing up to twofold of their 
body weight over an 8‑week period. The mice ascended 
a 1‑m‑height ladder with an 80‑degree slope. Mice in the 
irisin group received 100 µg/kg/week irisin for 8 weeks, 
intraperitoneally. Seventy‑two hours after the last training 
session, under anesthesia, blood samples were obtained 
through cardiac puncture and collected in EDTA tubes. For 
immunohistochemistry (IHC) analysis, tissue samples were 
fixed in 10% neutral buffered formalin, while for western 
blot and real‑time PCR analysis, samples were rapidly 
transferred into liquid nitrogen.[21,22]

ELISA analysis

Blood samples, collected in EDTA tubes, underwent 
centrifugation at 4000 rpm for 15 min to isolate the 
serum. Subsequently, the assessment of serum irisin 
levels was conducted using commercial enzyme‑linked 
immunosorbent assay (ELISA) kits (Aviscera Biosciences, 
Santa Clara, CA).[23]

Real‑time PCR for VEGF gene expression

The quantification of VEGF expression levels was conducted 
through real‑time PCR. Total RNA from each sample was 
isolated using the Total RNA Prep Kit (BIOFACT, Korea) 
following the manufacturer’s instructions. The purity of the 
isolated RNA was assessed using the nanodrop 2000 (Thermo 
Scientific‑ USA), and DNase I (Sinaclon) was applied to 
prevent potential genomic DNA contamination. Subsequently, 
first‑strand cDNA synthesis was carried out using The 
BioFact™ 5× RT Pre‑Mix kit (BIOFACT, Korea). The qRT‑
PCR primers were designed and synthesized using AlleleID 
7.6 software (Premier Biosoft) and Metabion (Germany). 
The primers used were as follows: VEGF forward and 
reverse primer (CTCAATGTGTCTCTTTGCGCT and 
GGGGGCTCAGAATCACATCAT, respectively), GAPDH 
forward and reverse primer (CAGAACATCATCCCAGCCTCC 
and TTGGCAGGTTTCTCAAGACGG, respectively). 
Finally, Real‑time PCR was performed using the 
BioFACT™  2× Real‑Time PCR Master Mix kit (BIOFACT, 
South Korea) and StepOne Plus™ Real‑time PCR detection 
System (Applied Biosystems). GAPDH served as the internal 
reference.[23]

Immunohistochemistry (IHC) staining

IHC was utilized to assess the VEGF protein levels. 
The cardiac samples were fixed in 10% natural buffered 
formalin. Subsequently, a series of alcohol solutions with 
ascending concentrations up to 100% were employed for 
dehydration. The samples were embedded in liquid paraffin 
and sectioned into 4‑µm sections. After deparaffinization 
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with xylene and rehydration, the slides were immersed in 
1X TBS (T5912‑Sigma), followed by microwave treatment 
at high power for antigen retrieval. To permeabilize 
membranes, 3% Triton (Sigma‑T8787) was introduced. 
A 10% goat serum solution (Sigma‑G9023) was applied 
to the samples for 45 min to block the secondary antibody 
reaction with endogenous mouse IgG. The primary 
antibody (dilution: 1:100, Santa Cruz, sc‑53462) was 
added, and the slides were incubated for 24 hours at 
2‑8°C. Subsequently, the secondary antibody (dilution: 
1:150, Santa Cruz, sc‑2010) was applied, and the slides 
were incubated for 1 hour and 30 min at 37°C in the dark. 
The samples were transferred from the incubator to a dark 
room, and DAPI (D9542‑ Sigma) was employed for nuclei 
staining. Fluorescence imaging was conducted using a 
microscope (Olympus).[24]

Western blot analysis

VEGF protein expression in mouse heart samples was 
evaluated using the western blot technique, with tissue lysis 
carried out utilizing RIPA lysis buffer. The quantification 
of protein levels was conducted using the bicinchoninic 
acid (BCA) protein assay kit (Thermo Fisher Scientific, 
USA). Following electrophoresis for protein separation 
on the SDS‑PAGE gel, the proteins were transferred to a 
polyvinylidene difluoride (PVDF) membrane. Blocking of 
the membrane was achieved using 5% skim milk at room 
temperature, followed by overnight incubation with the 
Santa Cruz Biotechnology VEGF antibody (orb11554) at 
4°C. A secondary antibody (BA1054‑2) was then employed 
to identify the specific antibody complex. To normalize 
the results, the intensity of the GAPDH band served as an 
internal control (Anti‑GAPDH antibody, GTX100118, Santa 
Cruz, USA, was used as the primary antibody, followed 
by a secondary antibody, BA1054‑2). Finally, the bands 
were detected using an ECL western blotting detection 
system (GE Amersham, UK), and Image J software (NIH, 
MD, USA) was utilized for densitometry analysis of the 
protein bands.[24]

Statistical analysis

In this study, statistical analyses were performed using 
SPSS version 29. The result of all groups was evaluated 
with the one‑way ANOVA test and bivariate associations 
between serum irisin concentration and VEGF gene/protein 
expression in the hearts were evaluated by Pearson’s 

correlation coefficient. All data were presented as the 
mean ± standard deviation (SD). P <0.05 was considered 
as statistically significant.

Results
The results of all tests are summarized in Table 1.

Serum irisin concentration

Figure 1 depicts the quantitative analysis of serum 
irisin concentrations using ELISA. Irisin concentration 
in blood serum showed an increase in exercised mice 
compared with the control group, which was statistically 
significant (P < 0.05). It was also observed that the level of 
irisin concentration was significantly elevated in exogenous 
irisin injection groups compared with the control 
group (P < 0.05). The maximum irisin concentration was 
seen in the resistance training group but no significant 
difference was observed between the resistance training 
group and the irisin injection groups (P > 0.05).

VEGF gene and protein expression

The expression of the VEGF gene was assessed using 
the real‑time PCR method. The results indicated that, in 
comparison to the nonexercised groups, the resistance 
training group exhibited upregulation of the VEGF gene, 

Table 1: Correlation results before and after exercise (n=7 for each group)
Groups Irisin Concentration VEGF Gene VEGF Protein (IHC) VEGF Protein (Western 

Blot)
Mean±SD Percentage 

Change*
Mean±SD Percentage 

Change*
Mean±SD Percentage 

Change*
Mean±SD Percentage 

Change*
Control 4.86±1.1 0 0.0052±0.001 0 13.29±2.8 0 0.489±0.015 0
Resistance Exercise 7.86±0.54 61.72 0.0277±0.014 432.69 47.48±2.7 257.26 0.750±0.034 53.37
Irisin 7.53±0.82 54.93 0.0211±0.008 305.76 41.66±1.8 213.46 0.702±0.035 43.55
*Percentage change compared to the control group

Figure 1: Serum irisin concentration. Irisin concentration increased 
in resistance training and irisin groups compared to the control 
group. (*P < 0.05) but no significant difference was observed between the 
exercised mice and irisin‑receiving mice (P > 0.05). All data were presented 
as mean ± SD and the acceptable significant difference was at P < 0.05
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as illustrated in Figure 2. However, this upregulation 
was statistically significant only when compared to the 
control group (P < 0.05), and no significant difference was 
observed between the exercised mice and the exogenous 
irisin injection group (P > 0.05). The serum irisin level was 
significantly increased in the irisin group compared with 
the control group (P < 0.05).

IHC staining for VEGF protein detection showed that 
VEGF protein was significantly increased in the exercised 
group and irisin group compared with the control 
group (P < 0.05 in both cases, Figure 3) and the maximum 
protein level was observed in the trained mice. IHC 
findings also showed that the expression of VEGF protein 
was significantly higher in the resistance training group 
compared with the irisin group (P < 0.05).

The western blot analysis [Figure 4] indicated that the 
VEGF protein expression was significantly higher in all 
experimental groups than in the control group (P < 0.05 in 
all cases), which confirmed the results of the IHC findings. 
However, no significant difference was observed between 
the exercised mice and the exogenous irisin injection 
group (P > 0.05).

VEGF gene/protein expressions and serum irisin levels 
correlations

Table 2 shows the correlation results in the treated and 
control groups. A positive correlation was observed between 
cardiac VEGF gene expression (real‑time PCR) and 
irisin level (ELISA), in the resistance training (r = 0.788, 
P < 0.05) and irisin (r = 0.870, P < 0.05) groups. In 
addition, serum irisin concentration in exercised mice 
and irisin‑receiving mice was found to show a positive 
correlation with VEGF protein concentration in both 
IHC (r = 0.836, P < 0.05 and r = 0.894, P < 0.01, 

Figure 2: Cardiac VEGF gene expression. In exercise group and exogenous 
irisin injections group, the VEGF gene expression was significantly 
upregulated when compared to the control group (*P < 0.05). Exercised 
mice had higher expression of the VEGF gene in comparison with the irisin 
group but this was not statistically significant. All data were presented as 
mean ± SD and the acceptable significant difference was at P < 0.05

Figure 3: Expression of VEGF protein in heart. (a) IHC images displaying cardiac VEGF protein expression. (b) Quantitative analysis represented that in all 
experimental groups VEGF protein increased compared to the control group (*P < 0.05). The resistance training group had higher statistically significant level 
of VEGF protein in comparison to irisin group (#P < 0.05). All data were presented as mean ± SD and the acceptable significant difference was at P < 0.05

b
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respectively) and western blot tests (r = 0.917, P < 0.05 
and r = 0.871, P < 0.01, respectively). In the control 
groups, similar significant correlations were found between 
these parameters.

Discussion
Cardiovascular diseases represent a significant global 
health concern. A potential approach to enhances heart 
health is exercise and irisin has been suggested as one 
of the important exercise mediators for beneficial effects 
of it.[1,8,11] Angiogenesis, the development of new blood 
vessels, is recognized as a crucial factor essential for 
cardiac health, and the VEGF‑VEGFR system serves as a 
significant target for angiogenic‑related therapies in various 
diseases, including ischemia.[4,5]

In this study, resistance exercise significantly increased 
the level of cardiac VEGF gene and protein expression 
in comparison with the control group (P < 0.05). VEGF 
is a key regulator of angiogenesis.[4] This underscores 
the intricate relationship between resistance exercise 
and molecular adaptations within the heart. A study on 
the influence of isolated resistance exercise on cardiac 
remodeling, myocardial oxidative stress, and metabolism 
in infarcted rats also reported similar findings, indicating 
that resistance exercise may have beneficial effects on 

cardiac alterations in infarcted rats.[25] In the present 
study, elevated expression of VEGF in the cardiac tissue 
suggests a potential enhancement of vascularization in 
response to resistance exercise. Xi et al.[26] reported that 
resistance exercise significantly increased the regulation 
of skeletal muscle Follistatin‑like 1 (FSTL1), consequently 
improving cardiac angiogenesis in subjects with myocardial 
infarctions. In a study aimed at investigating the effects 
of different types of exercise (aerobic vs. resistance) on 
vascular function and VEGF in older women, the serum 
concentration of VEGF showed an increase following the 
resistance exercise regimen.[27] However, the mechanism of 
VEGF gene and protein increase has not been clear in any 
of the previous studies.

The effects of exercise can be mediated by myokines, 
types of cytokines and peptides produced by muscle fibers 
during physical activity, which physiologically connect the 
organs.[28] The present data demonstrated that resistance 
exercise increases the level of irisin in the blood of mice. 
At the molecular level, resistance exercise triggers a 
cascade of cellular events that lead to an increase in irisin 
levels in the blood. resistance exercise stimulates skeletal 
muscle fibers to release myokines, including irisin. Irisin is 
a cleaved and secreted fragment of the fibronectin type III 
domain‑containing 5 (FNDC5) protein. Muscles release 
signaling molecules in response to exercise, leading to 

Table 2: Correlation results before and after exercise (n=7 for each group)
Serum Irisin Concentration (ELISA)

Control Resistance Exercise Irisin Injection
R P r P r P

VEGF gene expression (real‑time PCR) 0.851 <0.05 (0.015) 0.788 <0.05 (0.035) 0.870 <0.05 (0.011)
VEGF protein expression (IHC) 0.766 <0.05 (0.045) 0.836 <0.05 (0.019) 0.894 <0.01 (0.007)
VEGF protein expression (western blot) 0.817 <0.05 (0.025) 0.917 <0.01 (0.004) 0.871 <0.05 (0.011)

Figure 4: Cardiac expression of VEGF protein assessed through western blot analysis. (a) Quantitative analysis of VEGF protein levels. In comparison 
with the control group, this protein was significantly upregulated in the resistance training and irisin groups (*P < 0.05). No significant differences were 
observed among treatment groups (P > 0.05). (b) Identification of VEGF protein bands using western blot analysis. All data are presented as mean ± SD, 
and the accepted level of significance was set at P < 0.05

ba
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an increase in AMP levels and activating AMP‑activated 
protein kinase (AMPK). AMPK stimulates the expression of 
peroxisome proliferator‑activated receptor gamma coactivator 
1‑alpha (PGC‑1α), a transcriptional coactivator that regulates 
various aspects of energy metabolism. PGC‑1α induces the 
expression of the FNDC5 gene. The FNDC5 protein is cleaved 
into its active form, irisin. After cleavage, irisin is released 
into the blood. It is demonstrated that exercise induces a 
dramatic transient increase in PGC‑1alpha transcription and 
mRNA content in human skeletal muscle. It is reported that 
high‑frequency electrical muscle stimulation, mimicking 
resistance training, acutely increased the phosphorylation of 
PKB and the phosphorylation of TSC2, mTOR, and GSK‑3β 
at PKB‑sensitive sites, suggesting a specific activation of 
the AMPK‑PGC‑1α signaling pathway by resistance‑like 
stimulation.[29,30] Figure 5 provides a summary.

As illustrated in Figure 1, the current study demonstrated 
that exogenous irisin injection significantly elevated serum 
irisin levels compared to the control group (P < 0.05). 
Additionally, there was no significant difference between 
exercised mice and the irisin group (P > 0.05). These 
observations align with findings from prior studies.[17] 
This suggests that mice subjected to irisin injection may 
experience similar advantages or complications associated 
with heightened serum irisin levels, mirroring those 
undergoing prolonged resistance exercise. In the present 
study, similar to resistance exercise, irisin injection 
significantly increased cardiac VEGF gene/protein 
compared to the control group (P < 0.05).

The current study revealed a correlation between serum 
irisin levels and the expression of both the VEGF gene 

Figure 5: Potential signaling pathways in Irisin‑VEGF interaction. Exercise induces an elevation in AMP levels, activating AMPK, which subsequently 
stimulates the expression of PGC‑1α, leading to the induction of FNDC5. The FNDC5 protein is then cleaved into its active form, irisin. The molecular 
mechanism underlying irisin’s effect on VEGF remains unclear. VEGF expression is up‑regulated by the MAPK pathway and HIF‑1α‑related signaling 
pathways during hypoxia. Exercise can initiate these signaling pathways. It is hypothesized that the relationship between irisin and the VEGF gene/protein 
may be associated with the signaling pathways linked to MAPK and/or HIF‑1α. VEGF, Vascular endothelial growth factor; AMP, Adenosine monophosphate; 
AMPK, Adenosine monophosphate‑activated protein kinase; FNDC5, Fibronectin Type III Domain Containing 5; MAPK, Mitogen‑activated protein kinase; 
HIF‑1α, Hypoxia‑Inducible Factor‑1
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and protein in the cardiac tissue in both non‑exercised and 
exercised mice. Previous studies have implicated both irisin 
and VEGF in exercise‑induced cardiac remodeling.[11,31] 
However, the specific correlation between irisin and VEGF 
in the context of resistance exercise in NMRI mice remains 
a novel contribution. We suggested that the upregulation 
of VEGF, a key factor in cardiovascular health, coupled 
with increased Irisin levels, implies a potential synergistic 
effect in promoting vascularization and cardiac adaptation 
and/or a potential mechanism through which irisin may 
mediate vascular adaptation and cardiac health in response 
to resistance exercise.

As shown in Figure 5, VEGF production can be 
influenced by some signaling pathways such as 
MAPK (mitogen‑activated protein kinase). The MAPK 
pathway is a critical intracellular signaling cascade involved 
in the regulation of various cellular processes, such as 
cell proliferation, differentiation, and survival. A study 
monitored MAPK signaling and found that VEGF secreted 
from osteocytes activated VEGFR2‑MAPK‑ERK‑signaling 
pathways in endothelial cells, suggesting the involvement 
of the MAPK pathway in osteocyte‑mediated angiogenesis. 
It is also reported that the main MAPK pathways, 
including ERK, JNK, and p38, were differentially 
activated by cerebral ischemia, with potential implications 
for neovascularization.[32‑34] VEGF expression is also 
up‑regulated during hypoxia by HIF‑1α‑related signaling 
pathways in in familial breast cancers,[35] hepatocellular 
carcinoma,[36] and primary oral melanoma.[37]

Exercise also can induce MAPK activation and muscle 
hypoxia‑related HIF‑1α expression. A systematic review 
evaluated the time course of MAPK phosphorylation in 
response to resistance exercise, highlighting the impact of 
resistance exercise on the signaling activities of MAPKs, 
such as ERK1/2, p90RSK, JNK, and p38‑MAPK.[38,39] 
A study on people with chronic obstructive pulmonary 
disease (COPD) living at high altitudes suggested the 
effects of an 8‑week program of physical exercise of 
resistance and muscular strength on HIF‑1α.[40]  So, it can 
be suggested that the relationship between irisin and VEGF 
gene and protein may be related to signaling pathways 
related to MAPK and/or HIF‑1α. However, more studies 
are needed in the future.

Conclusions
In conclusion, this study demonstrated the dynamic 
interplay between resistance exercise and cardiac 
angiogenesis, underscoring the intricate molecular signaling 
pathways influenced by resistance exercise. Specifically, 
the potential role of irisin in modulating VEGF‑related 
pathways was highlighted. These findings can be 
considered in cardiovascular health‑related interventions, 
aiming to address specific molecules or pathways for the 
development of more effective and targeted treatments.
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