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Breast Cancer Survival Analysis: Applying the Generalized Gamma Distribution 
under Different Conditions of the Proportional Hazards and Accelerated Failure 
Time Assumptions
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ABSTRACT

Background: The goal of  this study is to extend the applications of  
parametric survival models so that they include cases in which accelerated 
failure time (AFT) assumption is not satisfied, and examine parametric 
and semiparametric models under different proportional hazards (PH) 
and AFT assumptions.
Methods: The data for 12,531 women diagnosed with breast cancer in 
British Columbia, Canada, during 1990–1999 were divided into eight 
groups according to patients’ ages and stage of  disease, and each group 
was assumed to have different AFT and PH assumptions. For parametric 
models, we fitted the saturated generalized gamma (GG) distribution, 
and compared this with the conventional AFT model. Using a likelihood 
ratio statistic, both models were compared to the simpler forms 
including the Weibull and lognormal. For semiparametric models, either 
Cox’s PH model or stratified Cox model was fitted according to the PH 
assumption and tested using Schoenfeld residuals. The GG family was 
compared to the log-logistic model using Akaike information criterion 
(AIC) and Baysian information criterion (BIC).
Results: When PH and AFT assumptions were satisfied, semiparametric 
and parametric models both provided valid descriptions of  breast 
cancer patient survival. When PH assumption was not satisfied but 
AFT condition held, the parametric models performed better than the 
stratified Cox model. When neither the PH nor the AFT assumptions 
were met, the log normal distribution provided a reasonable fit.
Conclusions: When both the PH and AFT assumptions are satisfied, 
the parametric and semiparametric models provide complementary 
information. When PH assumption is not satisfied, the parametric 
models should be considered, whether the AFT assumption is met or 
not.
Key words: Breast cancer, generalized gamma distribution, 
parametric regression, stratified Cox model, survival analysis

INTRODUCTION
The Cox proportional hazards (PH) model is popular for 

analyzing survival data. The utility of  this model stems from the 

Department of Health and Community Medicine, 
School of Medicine, 1Department of Biostatistics, 
Paramedical Sciences Faculty, 3Department of 
Health and Community Medicine and Genomic 
Research Center, School of Medicine, Shahid 
Beheshti University of Medical Sciences, Tehran, 
Iran, 2Cancer Control Research Program, BC Cancer 
Agency, Vancouver, British Columbia, Canada

Correspondence to:
Dr. Alireza Abadi, 
Department of Health and Community 
Medicine, School of Medicine, Shahid 
Beheshti University of Medical Sciences, 
Tehran, Iran.
E-mail: alirezaabadi@gmail.com

Date of Submission: Jan 10, 2012

Date of Acceptance: Apr 14, 2012

How to cite this article: Abadi A, Amanpour F, Bajdik 
C, Yavari P. Breast cancer survival analysis: Applying the 
generalized gamma distribution under different conditions 
of the proportional hazards and accelerated failure time 
assumptions. Int J Prev Med 2012;3:644-51.

www.mui.ac.ir 



Abadi, et al: Breast cancer survival analysis with applying the generalized gamma distribution

645International Journal of Preventive Medicine, Vol 3, No 9, September, 2012

fact that few assumptions are needed to determine 
hazard ratios based on the coefficients. The 
coefficients are easily interpreted and clinically 
meaningful.[1]The “stratified Cox (SC) model” is a 
modification of  the Cox PH model, which allows 
for control by stratification of  a predictor that does 
not satisfy the PH assumption.[2]

Parametric models are used only occasionally in 
analyzing clinical studies of  survival despite offering 
some advantages over semiparametric models. 
Parametric regression analysis is an attractive 
alternative to the widely used Cox model when hazard 
functions themselves are of  primary interest, or 
when relative survival times are the primary measure 
of  association.[3] When empirical information is 
available, parametric models can provide insight 
into the shape of  the baseline hazard and baseline 
survival. However, fully parametric models involve 
stronger assumptions than semiparametric options. 
Furthermore, difficulty choosing the appropriate 
family of  distributions leads many researchers to 
prefer the Cox model.[4] Some parametric models 
are accelerated failure time (AFT) models which 
assume that the relationship between the logarithm 
of  survival time and covariates is linear.[5] Violation 
of  the AFT assumption makes the parametric 
models more complicated.

One approach to address these difficulties is 
fitting the generalized gamma (GG) distribution. 
This extensive family contains nearly all commonly 
used distributions including the exponential, 
Weibull, and log normal, making it particularly 
useful for estimating individual hazard functions as 
well as both relative hazards and relative survival 
times.[3]

In this analysis, we applied both semiparametric 
and parametric models under different conditions 
of  the PH and AFT assumptions and compared 
their results.

MATERIALS AND METHODS
Study design
The data in this study describe 12,531 women 

diagnosed with breast cancer in British Columbia 
during 1990–1999, and followed till 2010. All 
women were identified from the population-based 
BC Cancer Registry.

Patients’ treatments included hormone therapy, 
chemotherapy, surgery, and radiotherapy. These 

were coded using binary variables equal to one 
if  the subject received the treatment and zero 
otherwise.

We defined survival time as a period between 
the diagnosis of  disease and death or the end of  
patient’s follow-up.

A binary censoring variable was used to indicate 
whether a patient died of  breast cancer.

Statistical analysis
Parametric model
For choosing the appropriate parametric 

model, we started by fitting the saturated GG 
distribution. This distribution is a three-parameter 
family with location (b), scale (s > 0), and shape 
(l) parameters, in which all the three parameters 
depend on covariates. It should be noted that 
the conventional AFT model holds only when 
covariate effects are modeled through the beta 
parameter. If  we extend the analysis to covariates 
having effects through the sigma and/or lambda 
parameters, these are no longer conventional AFT 
models.[3]

The GG family contains nearly all of  the most 
commonly used distributions in survival analysis, 
including the exponential (l = s = 1), Weibull 
(l = 1), and log normal (l = 0). If  a general 
parametric distribution includes other distributions 
as special cases, the general distribution is 
called a nesting (larger) family of  the specific 
distributions.[5] The GG distribution includes 
three specific distributions, and thus represents a 
nesting family of  them, allowing us to evaluate 
the appropriateness of  the specific distributions 
relative to each other. Testing the appropriateness 
of  a family of  distributions is equivalent to testing 
whether a subset of  parameters in its nesting 
distribution are equal to specific values, and can 
be performed using a likelihood ratio test.[5]

The log-logistic distribution is a commonly used 
distribution in survival analysis, which is not nested 
in the GG family. To compare the selected parameter 
distribution with the log-logistic distribution, we used 
simple procedures based on Baysian information 

criterion (BIC (r=L (b) -
p

2
log(n))

Ù

; Schwarz, 1978 and 

Akaike information criterion (AIC; Akaike, 1969), 
in which r is defined as  (r = L( ) - 2p). In  our 
comparisons, the candidate distribution with the 
largest r value was considered the best fit.[5]
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For AFT models, we can estimate relative 
survival time by exponentiating the coefficient of  
a variable. For other models, we can calculate the 
relative time, RT (p), using appropriate formulae. 
The relative times are defined for 0 < p < 1 as the 
ratio of  the corresponding quantile functions, RT 
(p) = t

1
 (p)/t

0
(p). The interpretation of  RT (p) is that 

the time required for proportion p of  individuals 
in the exposed or treated population to experience 
the event of  interest is RT(p)-fold the time for the 
same proportion of  events to occur in the reference 
population. Links between quantiles of  the gamma 
and GG facilitats use of  software to obtain the 
percentiles of  the GG.[3]

Semiparametric model
We can also describe the distribution of  

survival time by specifying the hazard function. 
The advantage of  this approach is that we directly 
address the aging process. Cox was the first to 
propose the model, specifying the hazard function 
as a function of  time and the covariates:[1]

H (t, x, b) = h
0
(t) exp(xb).

With this parameterization, the hazard ratio is:

HR (t, x
1
, x

0
) = exp(b(x

1
 - x

0
)).

The Cox PH model assumes that the hazard ratio 
for any two specifications of  predictors is constant 
over time, and Schoenfeld residuals can be used to 
assess the PH assumption.[2] The “SC model” is a 
modification of  the Cox PH model, which allows 
for control by “stratification” of  a predictor that 
does not satisfy the PH assumption.The predictor 
that does not satisfy the PH assumption is being 
adjusted by stratification, whereas the predictor 
that satisfies the PH assumption is being adjusted 
by its inclusion in the model. The hazard ratio 
value for the effect of  variables in each stratum 
can be estimated. Nevertheless, the hazard 
ratio value for the effect of  a stratified variable 
cannot be estimated. Furthermore, we applied the 
likelihood ratio (LR) test to check the interaction 
between stratified variable and variables in each 
stratum.[2]

A standard treatment protocol for breast 
cancer is determined mainly by the patient’s age, 
stage of  cancer, and tumor sensitivity to certain 
hormones. Breast cancer stage has an important 

role in choosing the treatment, and a patient’s 
response to treatment depends on her age, so we 
divided the dataset according to the age of  patient 
at diagnosis of  disease (age < 50, age ≥ 50) and 
the stage of  cancer (I, II, III, IV). This produced 
eight combinations of  age and stage with different 
conditions of  PH and AFT assumptions, and we 
could compare the treatment effect on patient 
survival with parametric and semi-parametric 
models.

The presence of  hormone receptors has been 
proven to have an effect on survival time of  patient, 
and was included in all models.

For each combination of  age and stage, we only 
included variables for which more than 10 patients 
received and did not receive the treatment.

RESULTS
Frequency of  patients receiving treatment by 

stages at diagnosis is shown in Table 1. Results of  
comparison between parametric regression models 
have been summarized in Table 2. Also, the results 
of  fitting parametric model and Cox model are 
shown in Tables 3 and 4 respectively.

Situations when both PH and AFT 
assumptions are satisfied

For patients under age 50 years in disease stages 
I and IV, the PH and AFT assumptions were 
satisfied.

In patients under age 50 years with stage I cancer, 
the best-fitting parametric model used a conventional 
GG distribution in which chemotherapy (P < 0.001) 
and erposneg (P = 0.002) were significant. For the 
Cox model, radiotherapy (P = 0.001), chemotherapy 
(P < 0.001), and hormone therapy (P = 0.01) were 
significant. In both models, no interactions were 
significant.

In patients under age 50 years with stage IV 
cancer, a conventional lognormal model was the 
best candidate in GG family. The AIC and BIC 
criteria were the same for conventional lognormal 
and conventional log-logistic models, but the 
Cox–Snell residual plot indicated better fit for the 
lognormal. Radiotherapy (P = 0.01), hormone 
therapy (P = 0.01), and erposneg(P = 0.01) were 
meaningful in lognormal model. For the Cox 
model, radiotherapy (P = 0.02) and erposneg 
(P = 0.001) were significant and no interactions 
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Table 1: Number of patients receiving treatment by stage at diagnosis

Stage Treatment  Age <50  Age ³50
Yes No Yes No

I Surgery 1217 2 4343 12
Radiotherapy 955 264 2976 1379
Chemotherapy 443 776 229 4126
Hormone therapy 233 986 1546 2809

II Surgery 1815 6 3748 12
Radiotherapy 1486 335 2547 1213
Chemotherapy 1676 145 1169 2591
Hormone therapy 726 1095 2955 805

III Surgery 288 17 538 58
Radiotherapy 293 12 509 87
Chemotherapy 298 7 326 270
Hormone therapy 165 140 464 132

IV Surgery 73 33 228 141
Radiotherapy 87 19 266 103
Chemotherapy 86 20 128 241
Hormone therapy 65 41 294 75

Table 2: Comparison between parametric regression models in each category of age and stage

Stage Distribution* Age < 50 Age ≥ 50
XL BIC AIC XL BIC AIC

I GGs ---- ---- ---- ---- ---- ----
GGc Ref -561.24 -550.37 Ref -1587.83 -1572.5
Weibull 26.82 -571.1 -561.78 36.4294 -1601.86 -1588.72
Log-normal 11.5 -563.44 -554.12 6.9262 -1587.11 -1573.97
Log-logistic -569.297 -559.98 -1598.5 -1585.38

II GGs Ref -1548.12 -1527.1 Ref -2998.45 -2979.41
GGc 131.96 -1591.58 -1581.06 91.6 -3027.8 -3017.21
Weibull 200.57 -1633.39 -1619.36 257.56 -3114.89 -3102.19
Log-normal 116.31 -1591.26 -1577.23 123.56 -3047.89 -3035.19
Log-logistic -1616.24 -1602.21 -3087 -3074.3

III GGs ---- ----- ---- Ref -757.44 -735.93
GGc Ref -376.13 -371.83 29.03 -739.82 -730.44
Weibull -91.2 -418.96 -415.42 107.89 -792.21 -777.869
Log-normal 52.6 -399.56 -396.12 48.93 -762.74 -748.4
Log-logistic -406.88 -403.44 -771.4 -757.06

IV GGs ---- ---- ---- Ref -570.95 -556.62
GGc Ref -155.34 -152.69 23.32 -558.97 -552.28
Weibull 26.36 -166.18 -163.86 59.2 -585.77 -576.22
Log-normal 4.1 -155.05 -152.73 10.06 -561.2 -541.65
Log-logistic -153.76 -151.44 -560.485 -550.93

XL: Likelihood ratio statistic relative to generalized gamma ,  Ref: Reference distribution, ----: not meaningful, s: saturated 
(all parameters depend on covariates and model is not AFT), c: conventional ( only location parameter depends on covariates 
and model is AFT), *: in each category of age and stage, all distributions’ conditions are like the reference distribution of that 
category whether it is saturated or conventional.

were significant in any of  the models. Cox–Snell 
residual plots for the lognormal, log-logistic, and 
Cox PH model are given in Figures 1–3.

Situations when only AFT assumptions hold
For patients aged 50 years or more with stage I 

cancer, the PH assumption was not satisfied, but the 
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Table 3: Relative time estimated in parametric models

Stage Age <50 Age ≥50
	 Variable RT 95%CI Variable RT 95%CI
I Radiotherapy ----- ----- Radiotherapy 0.772 (0.63,0.95)

Chemotherapy 0.547 (0.39,0.76) Chemotherapy 0.405 (0.28,0.58)
Hormone therapy ----- ----- Hormone therapy 0.553 (0.46,0.67)
Erposneg 1.71 (1.22,2.41) Erposneg 1.621 (1.27,2.05)

II Radiotherapy NC Radiotherapy NC
Hormone therapy NC Erposneg NC
Erposneg NC

III Hormone therapy 1.356 (1.05,1.75) Surgery NC
Erposneg 1.531 (1.165,2.01) Radiotherapy NC

Chemotherapy NC

Hormone therapy NC
IV Surgery ----- Surgery NC

Radiotherapy 1.91 (1.16,3.1) Radiotherapy NC
Chemotherapy ----- Chemotherapy -----
Hormone therapy 1.77 (1.13,2.8) Hormone therapy NC
Erposneg 1.82 (1.14,2.9) Erposneg NC

RT: Relative time          	 -----: Not significant	 NC: Not constant

Table 4: Relative hazard estimated in Cox model

Stage Age <50 Age ³50
Variable HR 95%CI Variable HR 95%CI

I Radiotherapy 2.53 (1.45,4.39) Radiotherapy 1.42 (1.13,1.79)
Chemotherapy 1.9 (1.42,2.8) Chemotherapy 2.39 (1.77,3.22)
Hormone therapy 1.66 (1.12,2.46) Hormone therapy 1.91 (1.56,2.34)
Erposneg ----- ----- Erposneg -PH,s

II Radiotherapy -PH Radiotherapy 2.21 (1.88,2.59)
Chemotherapy ----- ----- Erposneg -PH,s
Hormone therapy -PH
Erposneg -PH

III Hormone therapy ----- ----- Surgery 0.49 (0.35,0.68)
Erposneg ----- ----- Radiotherapy -----

Chemotherapy -----
Hormone therapy -----
Erposneg -PH,s

IV Surgery ----- ----- Surgery 0.66 (0.53,0.84)
Radiotherapy 0.50 (0.3,0.9) Radiotherapy -PH
Chemotherapy ----- ----- Chemotherapy ----
Hormone therapy ----- ----- Hormone therapy -PH
Erposneg 0.42 (0.25,0.7) Erposneg -PH,s

HR: Relative hazard               -----: Not significant                -PH: Not PH               S: Stratified by

AFT assumptions held. In parametric models, the 
conventional GG had the best fit and radiotherapy 
(P = 0.014), chemotherapy (P < 0.001), hormone 
therapy (P < 0.001), and erposneg (P < 0.001) 
were significant. In semiparametric model, the 

covariates radiotherapy (P = 0.003), chemotherapy 
(P < 0.001), hormone therapy (P < 0.001), and 
erposneg (P < 0.001) were meaningful; and 
since the variable erposneg did not hold the PH 
assumption, it was lost due to stratification and 
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Figure 1: Cox-Snell residual plot for fitted conventional 
lognormal model for patients under age 50 years with stage 
IV cancer

Figure 2: Cox-Snell residual plot for fitted conventional 
log-logistic model for patients under age 50 years with stage 
IV cancer

Figure 3: Cox-Snell residual plot for proportional Cox 
model for patients under age 50 years with stage IV cancer

the effects of  other parameters were estimated 
by stratifying the model by this variable. No 
interactions were significant in each model.

Situations where none of the PH and AFT 
assumptions are satisfied

For patients aged 50 years or more with stage IV 
cancer, none of  the PH and AFT assumptions held. 
In parametric model, the GG family fitted better than 
the log-logistic according to AIC and BIC criteria. 
In models based on the GG family , the saturated 
lognormal distribution was the best model. In this 
model, surgery (P = 0.001), radiotherapy (P = 0.004), 
hormone therapy (P < 0.001), and erposneg 
(P < 0.001) were significant and the interaction 
of  hormone therapy and erposneg (P = 0.021) 
was meaningful. Since the saturated lognormal 
is not an AFT model, the relative survival time 
was calculated for the 25th, 50th, and 75th quantiles. 
Results of  fitting have been shown in Table 5. In 
the Cox model, surgery (P = 0.001), radiotherapy 
(P = 0.03), hormone therapy (P< 0.001), and 
erposneg (P = 0.001) were significant. Since the PH 
assumption only held for surgery, the effect of  this 
variable was estimated by stratifying on erposneg. 
No interaction was significant in each model.

For all patients with stage II cancer, and patients 
aged 50 and older with stage III cancer, neither 
the PH nor the AFT assumptions were satisfied. 
In semiparametric models, most variables did not 
meet the PH assumption and their effect could not 
be estimated; in parametric models, the saturated 
GG fitted better than other distributions.

DISCUSSION
When PH and AFT assumptions were satisfied, 

both the parametric and semiparametric models 
were appropriate. The models indicate different 
significant variables, but parametric models have 
some advantages over semiparametric models in 
general. With small sample sizes, relative efficiencies 
may further change in favor of  parametric models.[4].
When the PH assumption is satisfied, some studies 
indicate that parametric PH models are a better 
approach than the Cox model.[6,7] Further, some 
studies have shown the robustness of  parametric 
AFT models to misspecification because of  their 
log-linear form.[8] Finally, one advantage of  a 
parametric model compared to a Cox model is that 
the parametric likelihood accommodates right-, 

www.mui.ac.ir 



Abadi, et al: Breast cancer survival analysis with applying the generalized gamma distribution

International Journal of Preventive Medicine, Vol 3, No 9, September, 2012650

Table 5: Relative times for stage IV–Age³50

Variable RT(0.25) RT(0.5) RT(0.75)
Surgery 1.3 1.55 1.86
Radiotherapy 2.09 1.68 1.35
Erposneg 2.84 3 3.17
Hormone therapy if erposneg=1 2.4 2.53 2.67
Hormone therapy if erposneg=0 1.14 1.19 1.24

left-, or interval-censored data. The Cox likelihood, 
by contrast, handles right-censored data but does 
not directly accommodate left- or interval-censored 
data.[2]

When the PH assumption is not satisfied but 
AFT assumptions hold, the parametric model can 
be used as a substitute for the Cox model. Other 
studies have suggested the same thing.[9,10]

When neither the PH nor the AFT assumptions 
hold, a member of  the GG distribution, the 
saturated lognormal, can be used to calculate 
relative survival times in different quantiles. The 
lognormal distribution has a long history in cancer 
survival analysis.[10,11].In many settings, including 
breast cancer analysis, where the proportionality 
assumption does not hold, the lognormal model 
has been shown to be appropriate.[12-14]. A meta-
analysis has shown that saturated parametric 
models provide better results than conventional 
models for comparing treatments.[15]

When the PH and AFT assumptions do not 
hold and the saturated GG distribution fits 
better than other distributions, further analyses 
may need to be considered. Through its three 
parameters, the GG family contains many 
different distributions such as the inverse Weibull 
and inverse lognormal.[3] Accordingly, the best 
fit can be found by trying different parameters. 
Our analysis applied the most commonly used 
parametric distributions in survival analysis, but 
we could not determine the best fit.

For one category of  age and stage in our study, 
according to AIC and BIC criteria, the log-logistic 
distribution gave the same fit as the lognormal model 
within the GG family. The log-logistic distribution 
belongs to the generalized F distribution, which 
includes the GG distribution. When a member of  
the GG family does not fit satisfactorily, the best 
distribution can be found through the generalized 
F distribution family.[16,17]

If  the scales of  the parameters in Cox’s 
model and the parametric models differ, neither 

parameter estimates nor their estimated variances 
are suitable for comparisons. If  the Cox model is 
compared to parametric PH models, the efficiency 
of  parameter estimates can be compared by Wald-
type statistics.[4]

For patients with stage IV cancer, semiparametric 
and parametric models showed lower hazards 
and longer survival times for patients receiving 
treatments than those not receiving treatments. For 
patients with stage I cancer in both the under 50-
year and over 50-year age groups, semiparametric 
and parametric models showed higher hazards 
and smaller survival times for patients receiving 
treatments, which might reflect other covariates 
that caused the patients to receive a certain 
treatment. For example, studies have shown the 
ethnicity of  patients affect their use of  treatments 
that are more common in lower stages of  cancer.[18]

In both parametric and semiparametric models 
applied to different combinations of  age and cancer 
stage, the expression of  hormone receptors was 
associated with a longer survival time and lower 
hazard, which has been confirmed in many other 
studies.[19]

A major strength of  this study is that we fitted 
models and performed comparisons using a large 
set of  real-life data from a population-based cancer 
registry. The major limitation is that our findings 
describe associations with survival, and not causes 
of  survival. In particular, breast cancer patients 
often receive treatments because of  disease 
characteristics. A patient’s survival does not 
necessarily depend on the treatment they receive; 
rather, the treatment that a patient receives often 
depends on disease characteristics that predict 
survival.

Subsequent research should examine whether 
our findings hold for other diseases and other 
populations. In particular, it would be of  interest 
to determine whether the findings are sustained 
in more-recent patient cohorts – where newer 
treatments have been used. However, there are 
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some recent studies that describe the factors 
associated with survival time of  patients in 
developing countries.[20, 21]

CONCLUSION
When PH and AFT assumptions were satisfied, 

semiparametric and parametric models provided 
two different valid approaches for exploring breast 
cancer patients’ survival, and the models can be 
seen as complementary. When PH assumptions 
were not satisfied but AFT conditions held, the 
parametric model should be used instead of  the 
Cox model. When neither the PH nor the AFT 
assumptions were met, the log normal distribution, 
a member of  the GG family, provided an alternative 
approach to semiparametric model. More generally, 
when PH assumptions are not satisfied, parametric 
models should be considered, whether or not AFT 
assumptions are met.
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