Transfusion Medicine and Molecular Genetic Methods
Abstract
Transfusion procedures are always complicated by potential genetic mismatching between donor and recipient. Compatibility is determined by several major antigens, such as the ABO and Rhesus blood groups. Matching for other blood groups (Kell, Kidd, Duffy, and MNS), human platelet antigens, and human leukocyte antigens (HLAs) also contributes toward the successful transfusion outcomes, especially in multitransfused or highly immunized patients. All these antigens of tissue identity are highly polymorphic and thus present great challenges for fnding suitable donors for transfusion patients. The ABO blood group and HLA markers are also the determinants of transplant compatibility, and mismatched antigens will cause graft rejection or graft‑versus‑host disease. Thus,
a single and comprehensive registry covering all of the signifcant transfusion and transplantation antigens is expected to become an important tool in providing an effcient service capable of delivering safe blood and quickly locating matching organs/stem cells. This review article is intended as an accessible guide for physicians who care for transfusion‑dependent patients. In particular, it serves to introduce the new molecular screening methods together with the biology of these systems,
which underlies the tests.
Keywords: Blood groups, genetic marker, human platelet antigen and human leukocyte antigen, transfusion
Full Text:
PDFReferences
Learoyd P. The history of blood transfusion prior to the
th century – Part 1. Transfus Med 2012;22:308‑14.
Pelis K. Moving blood. Vox Sang 1997;73:201‑6.
Allard S. Blood transfusion. Medicine 2013;41:242‑7.
Freedman J. Transfusion – Whence and why. Transfus Apher Sci
;50:5‑9.
Refaai MA, Blumberg N. The transfusion dilemma – Weighing
the known and newly proposed risks of blood transfusions
against the uncertain benefits. Best Pract Res Clin Anaesthesiol
;27:17‑35.
World Health Organization. More Voluntary Blood Donation
Essentials. Available from: http://www.who.int/mediacentre/
news/releases/2012/blood_donation_20120614/en/. [Last
accessed on 2016 April 20].
National Blood Centre, Ministry of Health Malaysia, editors.
Transfusion Practice Guidelines for Clinical and Laboratory
Personnel. 3rd ed. Ministry of Health Malaysia; 2008.
World Health Organization. Countries that Reported Having
Achieved 100% Voluntary Non‑Remunerated Blood Donation;
Available from: http://www.who.int/bloodsafety/voluntary_
donation/countries_100pct_vnrbd_2011.pdf. [Last accessed on
April 20].
Cheraghali A. Overview of blood transfusion system of Iran:
‑2011. Iran J Public Health 2012;41:89‑93.
Jain R, Gupta G. Family/friend donors are not true voluntary
donors. Asian J Transfus Sci 2012;6:29‑31.
Domen RE. The ethics of paid versus volunteer blood donation.
J Med Ethics 1994;20:269‑70.
World Health Organization. Blood Donor Selection: Guidelineson
Assessing Donor Suitability for Blood Donation.World Health
Organization; Geneva. 2012. Available from: http://www.who.int/
iris/handle/10665/76724. [Last accessed on 2016 April].
Mohamed Saleh R. The Study of the Antibody Response
to Malaria Parasites and Its Application to Detect Infected
UK Blood Donors. University of Oxford: Nuffield Clinical
Laboratory Science (NDCLS); 2012.
Piliavin JA. Temporary deferral and donor return. Transfusion
;27:199‑200.
Wevers A, Wigboldus DH, de Kort WL, van Baaren R,
Veldhuizen IJ. Characteristics of donors who do or do not
return to give blood and barriers to their return. Blood Transfus
;12 Suppl 1:s37‑43.
Custer B, Chinn A, Hirschler NV, Busch MP, Murphy EL. The
consequences of temporary deferral on future whole blood
donation. Transfusion 2007;47:1514‑23.
Greening DW, Glenister KM, Sparrow RL, Simpson RJ.
International blood collection and storage: Clinical use of blood
products. J Proteomics 2010;73:386‑95.
Green L, Allard S, Cardigan R. Modern banking, collection,
compatibility testing and storage of blood and blood components.
Anaesthesia 2015;70 Suppl 1:3‑9, e2.
Bolton‑Maggs PH, Cohen H. Serious Hazards of
Transfusion (SHOT) haemovigilance and progress is improving
transfusion safety. Br J Haematol 2013;163:303‑14.
Bihl F, Castelli D, Marincola F, Dodd RY, Brander C. Transfusion‑transmitted infections. J Transl Med 2007;5:25.
Niederhauser C, Weingand T, Candotti D, Maier A,
Tinguely C, Wuillemin WA, et al. Fatal outcome of a
hepatitis B virus transfusion‑transmitted infection. Vox Sang
;98:504‑7.
Mungai M, Tegtmeier G, Chamberland M, Parise M.
Transfusion‑transmitted malaria in the United States from 1963
through 1999. N Engl J Med 2001;344:1973‑8.
World Health Organization. Screening Donated Blood for
Transfusion‑Transmissible Infections. Switzerland: WHO Press;
Brecher ME, Hay SN. Bacterial contamination of blood
components. Clin Microbiol Rev 2005;18:195‑204.
Hillyer CD, Josephson CD, Blajchman MA, Vostal JG,
Epstein JS, Goodman JL, et al. Bacterial contamination of blood
components: Risks, strategies, and regulation: Joint ASH and
AABB educational session in transfusion medicine. Hematology
Am Soc Hematol Educ Program 2003;1:575‑89.
Störmer M, Vollmer T. Diagnostic methods for platelet bacteria
screening: Current status and developments. Transfus Med
Hemother 2014;41:19‑27.
British Committee for Standards in Haematology, Milkins C,
Berryman J, Cantwell C, Elliott C, Haggas R, et al. Guidelines
for pre‑transfusion compatibility procedures in blood transfusion
laboratories. British Committee for Standards in Haematology.
Transfus Med 2013;23:3‑35.
Demirkan F, Gunal V, Dereli Y. A new method for electronic
crossmatch: ABO/Rh blood group confirmation and antibody
screening concomitantly with serologic crossmatch. Blood
Transfus 2013;122:4833.
Ostendorf N, Niefhoff D, Cassens U, Sibrowski W. Automated
serological compatibility testing using a solid‑phase test and
standard laboratory equipment. Vox Sang 2001;80:225‑9.
Blann A. Routine Blood Results Explained. Cumbria: M & K
Update Ltd.; 2006.
Brown CJ, Navarrete CV. Clinical relevance of the HLA system
in blood transfusion. Vox Sang 2011;101:93‑105.
Kekomäki R. Use of HLA‑ and HPA – Matched platelets in
alloimmunized patients. Vox Sang 1998;74 Suppl 2:359‑63.
Edinur HA, Manaf SM, Che Mat NF. Genetic barriers in
transplantation medicine. World J Transplant 2016;6:532‑41.
Linden JV, Wagner K, Voytovich AE, Sheehan J. Transfusion
errors in New York state: An analysis of 10 years’ experience.
Transfusion 2000;40:1207‑13.
Myhre BA, McRuer D. Human error‑a significant cause of
transfusion mortality. Transfusion 2000;40:879‑85.
Seiden SC, Barach P. Wrong‑side/wrong‑site, wrong‑procedure,
and wrong‑patient adverse events: Are they preventable? Arch
Surg 2006;141:931‑9.
Alves VM, Martins PR, Soares S, Araújo G, Schmidt LC,
Costa SS, et al. Alloimmunization screening after transfusion
of red blood cells in a prospective study. Rev Bras Hematol
Hemoter 2012;34:206‑11.
Sood R, Makroo RN, Riana V, Rosamma NL. Detection of
alloimmunization to ensure safer transfusion practice. Asian J
Transfus Sci 2013;7:135‑9.
Zalpuri S, Zwaginga JJ, van der Bom JG. Risk factors for
alloimmunisation after red blood cell transfusions (R‑FACT): A
case cohort study. BMJ Open 2012;2:e001150.
Delaney M, Wendel S, Bercovitz RS, Cid J, Cohn C,
Dunbar NM, et al. Transfusion reactions: Prevention, diagnosis,
and treatment. Lancet 2016;388:2825‑36.
Strobel E. Hemolytic transfusion reactions. Transfus Med
Hemother 2008;35:346‑53.
Malhotra S, Dhawan HK, Jain A, Sachdev S, Marwaha N.
Acute hemolytic transfusion reaction in a patient with bombay
phenotype: Implications for ABO grouping. Indian J Hematol
Blood Transfus 2014;30:108‑10.
Park TS, Kim KU, Jeong WJ, Kim HH, Chang CL, Chung JS,
et al. Acute hemolytic transfusion reactions due to multiple
alloantibodies including anti‑E, anti‑C and anti‑JKB. J Korean
Med Sci 2003;18:894‑6.
Metcalfe P. Platelet antigens and antibody detection. Vox Sang
;87 Suppl 1:82‑6.
Rozman P. Platelet antigens. the role of human platelet
alloantigens (HPA) in blood transfusion and transplantation.
Transpl Immunol 2002;10:165‑81.
Rafei H, Yunus R, Nassereddine S. Post‑transfusion purpura:
A case report of an underdiagnosed phenomenon. Cureus
;9:e1207.
Arewa OP, Nahirniak S, Clarke G. Anti‑HPA‑1b mediated
posttransfusion purpura: A case report. Case Rep Med
;2013:568364.
Phuangtham R, Romphruk A, Puapairoj C, Leelayuwat C,
Romphruk AV. Human platelet antigens in burmese, Karen and
North‑Eastern Thais. Transfus Med 2017;27:60‑5.
Roth D. Adverse blood transfusion effects. J Assoc Vasc Access
;3:10‑5.
Dasararaju R, Marques MB. Adverse effects of transfusion.
Cancer Control 2015;22:16‑25.
Giangrande PL. The history of blood transfusion. Br J Haematol
;110:758‑67.
International Society of Blood Transfusion. Available from:
http://www.isbtweb.org. [Last accessed on 2016 April 25].
Komatsu F, Hasegawa K, Yanagisawa Y, Kawabata T, Kaneko Y,
Watanabe S, et al. Prevalence of diego blood group dia antigen
in mongolians: Comparison with that in Japanese. Transfus
Apher Sci 2004;30:119‑24.
Layrisse M, Arends T. The diego blood factor in chinese and
Japanese. Nature 1956;177:1083‑4.
Dean L. The Kell blood group. In: Blood Groups and Red Cell
Antigens. Bethesda (MD): National Center for Biotechnology
Information (US); 2005.
Reid ME, Lomas‑Francis C. The Blood Group Antigen Facts
Book. 2nd ed. New York: Elsevier Academic Press; 2004.
Langhi DM Jr., Bordin JO. Duffy blood group and malaria.
Hematology 2006;11:389‑98.
Meny GM. The duffy blood group system: A review.
Immunohematology 2010;26:51‑6.
Rowe JA, Opi DH, Williams TN. Blood groups and malaria:
Fresh insights into pathogenesis and identification of targets for
intervention. Curr Opin Hematol 2009;16:480‑7.
Zimmerman PA, Ferreira MU, Howes RE, Mercereau‑Puijalon O.
Red blood cell polymorphism and susceptibility to Plasmodium
vivax. Adv Parasitol 2013;81:27‑76.
Saison C, Helias V, Ballif BA, Peyrard T, Puy H, Miyazaki T,
et al. Null alleles of ABCG2 encoding the breast cancer
resistance protein define the new blood group system junior. Nat
Genet 2012;44:174‑7.
Storry Jr., Castilho L, Daniels G, Flegel WA, Garratty G,
de Haas M, et al. International society of blood transfusion
working party on red cell immunogenetics and blood group
terminology: Cancun report (2012). Vox Sang 2014;107:90‑6.
Zelinski T, Coghlan G, Liu XQ, Reid ME. ABCG2 null
alleles define the Jr(a‑) blood group phenotype. Nat Genet
;44:131‑2.
Daniels G. The molecular genetics of blood group polymorphism.
Hum Genet 2009;126:729‑42.
Veldhuisen B, van der Schoot CE, de Haas M. Blood group
genotyping: From patient to high‑throughput donor screening.
Vox Sang 2009;97:198‑206.
Harmening DM, Firestone D. The ABO blood group system. In:
Harmening DM, ediotr. Modern Blood Banking & Transfusion
Practices. 5th ed. Philadelphia: F.A. Davis Company; 2005.
p. 108‑33.
Olsson ML, Chester MA. Polymorphism and recombination
events at the ABO locus: A major challenge for genomic ABO
blood grouping strategies. Transfus Med 2001;11:295‑313.
Cooling L. ABO, H, and Lewis blood groups and structurally
related antigens. In: Technical Manual. Vol. 16. Maryland:
American Association of Blood Banks, Bethesda; 2008.
p. 361‑85.
Ridgwell K, Spurr NK, Laguda B, MacGeoch C, Avent ND,
Tanner MJ, et al. Isolation of cDNA clones for a 50 kDa
glycoprotein of the human erythrocyte membrane associated
with Rh (rhesus) blood‑group antigen expression. Biochem J
;287(Pt 1):223‑8.
Hemker MB, Ligthart PC, Berger L, van Rhenen DJ,
van der Schoot CE, Wijk PA, et al. DAR, a new RHD variant
involving Exons 4, 5, and 7, often in linkage with ceAR, a
new Rhce variant frequently found in African blacks. Blood
;94:4337‑42.
Arce MA, Thompson ES, Wagner S, Coyne KE, Ferdman BA,
Lublin DM, et al. Molecular cloning of rhD cDNA derived from
a gene present in rhD‑positive, but not rhD‑negative individuals.
Blood 1993;82:651‑5.
Daniels G. The molecular genetics of blood group polymorphism.
Transpl Immunol 2005;14:143‑53.
Wiler M. The Rh blood group system. In: Harmening DM,
editor. Modern Blood Banking & Transfusion Practices. 5th ed.
Philadelphia: F.A. Davis Company; 2005. p. 134‑147.
Grunbaum BW, Selvin S, Myhre BA, Pace N. Distribution of
gene frequencies and discrimination probabilities for 22 human
blood genetic systems in four racial groups. J Forensic Sci
;25:428‑44.
Huang CH, Reid M, Daniels G, Blumenfeld OO. Alteration
of splice site selection by an exon mutation in the human
glycophorin A gene. J Biol Chem 1993;268:25902‑8.
Velliquette RW, Hu Z, Lomas‑Francis C, Hue‑Roye K, Allen JL,
Mirabella D, et al. Novel single‑nucleotide change in GYP*A
in a person who made an alloantibody to a new high‑prevalence
MNS antigen called ENEV. Transfusion 2010;50:856‑60.
Leger RM, Calhoun L. Other major blood group systems. In:
Harmening DM, ediotr. Modern Blood Banking & Transfusion
Practices. 5th ed. Philadelphia: F.A. Davis Company; 2005.
Poole J, Banks J, Bruce LJ, Ring SM, Levene C, Stern H,
et al. Glycophorin A mutation ala65 ‑> pro gives rise to a
novel pair of MNS alleles ENEP (MNS39) and HAG (MNS41)
and altered Wrb expression: Direct evidence for GPA/band 3
interaction necessary for normal wrb expression. Transfus Med
;9:167‑74.
Lee S, Russo DC, Reiner AP, Lee JH, Sy MY, Telen MJ, et al.
Molecular defects underlying the kell null phenotype. J Biol
Chem 2001;276:27281‑9.
Daniels G. Human Blood Groups. 2nd ed. Malden, MA:
Blackwell Science; 2002.
Lee S, Russo DC, Reid ME, Redman CM. Mutations that
diminish expression of kell surface protein and lead to the kmod
RBC phenotype. Transfusion 2003;43:1121‑5.
Patnaik SK, Helmberg W, Blumenfeld OO. BGMUT: NCBI
dbRBC database of allelic variations of genes encoding antigens
of blood group systems. Nucleic Acids Res 2012;40:D1023‑9.
Lee S, Wu X, Reid M, Zelinski T, Redman C. Molecular basis of
the kell (K1) phenotype. Blood 1995;85:912‑6.
Lee S. The value of DNA analysis for antigens of the kell and
KX blood group systems. Transfusion 2007;47:32S‑9S.
Olivès B, Merriman M, Bailly P, Bain S, Barnett A, Todd J,
et al. The molecular basis of the kidd blood group polymorphism
and its lack of association with type 1 diabetes susceptibility.
Hum Mol Genet 1997;6:1017‑20.
Irshaid NM, Henry SM, Olsson ML. Genomic characterization
of the kidd blood group gene: Different molecular basis of
the JK(a‑b‑) phenotype in polynesians and finns. Transfusion
;40:69‑74.
Lin M, Yu LC. Frequencies of the JKnull (IVS5‑1g>a) allele
in Taiwanese, Fujian, Filipino, and Indonesian populations.
Transfusion 2008;48:1768.
Lucien N, Sidoux‑Walter F, Olivès B, Moulds J, Le Pennec PY,
Cartron JP, et al. Characterization of the gene encoding the
human kidd blood group/urea transporter protein. evidence
for splice site mutations in JKnull individuals. J Biol Chem
;273:12973‑80.
Liu HM, Lin JS, Chen PS, Lyou JY, Chen YJ, Tzeng CH,
et al. Two novel jk(null) alleles derived from 222C> A in
exon 5 and 896G> A in exon 9 of the JK gene. Transfusion
;49:259‑64.
Wester ES, Johnson ST, Copeland T, Malde R, Lee E, Storry JR,
et al. Erythroid urea transporter deficiency due to novel JKnull
alleles. Transfusion 2008;48:365‑72.
Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption
of a GATA motif in the Duffy gene promoter abolishes erythroid
gene expression in duffy‑negative individuals. Nat Genet
;10:224‑8.
Estalote AC, Proto‑Siqueira R, Silva WA Jr., Zago MA,
Palatnik M. The mutation G298A‑‑&Ala100Thr on the coding
sequence of the Duffy antigen/chemokine receptor gene in
non‑caucasian Brazilians. Genet Mol Res 2005;4:166‑73.
Rios M, Chaudhuri A, Mallinson G, Sausais L,
Gomensoro‑Garcia AE, Hannon J, et al. New genotypes in
Fy(a‑b‑) individuals: Nonsense mutations (Trp to stop) in
the coding sequence of either FY A or FY B. Br J Haematol
;108:448‑54.
Tournamille C, Le Van Kim C, Gane P, Le Pennec PY,
Roubinet F, Babinet J, et al. Arg89Cys substitution results in
very low membrane expression of the duffy antigen/receptor for
chemokines in Fy(x) individuals. Blood 1998;92:2147‑56.
Costa FP, Hue‑Roye K, Sausais L, Velliquette RW,
Da Costa Ferreira E, Lomas‑Francis C, et al. Absence of DOMR,
a new antigen in the dombrock blood group system that weakens
expression of Do(b), Gy(a), Hy, Jo(a), and DOYA antigens.
Transfusion 2010;50:2026‑31.
Daniels G. Other blood groups. In: Roback JD, Combs MR,
Grossman BJ, Hillyer CD, editors. Technical Manual. 16th ed.
Maryland: American Association of Blood Banks, Bethesda;
p. 411‑98.
Storry Jr., Westhoff CM, Charles‑Pierre D, Rios M, Hue‑Roye K,
Vege S, et al. DNA analysis for donor screening of dombrock
blood group antigens. Immunohematology 2003;19:73‑6.
Arnaud L, Helias V, Menanteau C, Peyrard T, Lucien N,
Ripoche P, et al. A functional AQP1 allele producing a Co(a‑b‑)
phenotype revises and extends the colton blood group system.
Transfusion 2010;50:2106‑16.
Norton A, Allen DL, Murphy MF. Review: Platelet alloantigens
and antibodies and their clinical significance. Immunohematology
;20:89‑102.
Metcalfe P, Watkins NA, Ouwehand WH, Kaplan C, Newman P,
Kekomaki R, et al. Nomenclature of human platelet antigens.
Vox Sang 2003;85:240‑5.
Eren E, Travers P. The structure of the major histocompatibility
complex and its molecular interactions. In: Rand L, Warrens A,
editors. HLA in Health and Disease. 2nd ed. San Francisco,
New York: Academic Press; 2000. p. 3‑33.
Milner CM, Campbell RD, Trowsdale J. Molecular genetics
of the human major histocompatibility complex. In: Rand L,
Warrens A, editors. HLA in Health and Disease. 2nd ed. San
Francisco, New York: Academic Press; 2000. p. 35‑50.
Goodfellow PN, Jones EA, Van Heyningen V, Solomon E,
Bobrow M, Miggiano V, et al. The beta2‑microglobulin gene
is on chromosome 15 and not in the HL‑A region. Nature
;254:267‑9.
Trowsdale J. Genetics and polymorphism: Class II antigens. Br
Med Bull 1987;43:15‑36.
Thorsby E. MHC structure and function. Transplant Proc
;31:713‑6.
Crumpton MJ. Introduction. Br Med Bull 1987;43:1.
Davies H. Introductory Immunobiology. London: Chapman &
Hall; 1997.
Strominger JL. Structure of class I and class II HLA antigens. Br
Med Bull 1987;43:81‑93.
Sinha AA, Lopez MT, McDevitt HO. Autoimmune diseases: The
failure of self tolerance. Science 1990;248:1380‑8.
Bodmer W, Thomson G. Population genetics and evolution of
the HLA system. In: Jand D, Svejgaard A, editors. HLA and
Disease. Copenhagen: Munksgaard; 1977. p. 280‑95.
Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P,
Marsh SG, et al. The IPD and IMGT/HLA database: Allele
variant databases. Nucleic Acids Res 2015;43:D423‑31.
Engelfriet CP, Reesink HW, Aster RH, Brand A, Tomson B,
Claas FH, et al. Management of alloimmunized, refractory
patients in need of platelet transfusions. Vox Sang 1997;73:191‑8.
Curtis BR, McFarland JG. Detection and identification of
platelet antibodies and antigens in the clinical laboratory.
Immunohematology 2009;25:125‑35.
Veldhuisen B, Porcelijn L, Ellen van der Schoot C,
de Haas M. Molecular typing of human platelet and neutrophil
antigens (HPA and HNA). Transfus Apher Sci 2014;50:189‑99.
Edinur HA, Chambers GK, Dunn PP. Recent developments
in transplantation and transfusion medicine. Ann Transplant
;20:424‑9.
Dunn PP. Human leucocyte antigen typing: Techniques
and technology, a critical appraisal. Int J Immunogenet
;38:463‑73.
Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P,
Marsh SG, et al. The IMGT/HLA database. Nucleic Acids Res
;41:D1222‑7.
Bakanay SM, Ozturk A, Ileri T, Ince E, Yavasoglu S, Akar N,
et al. Blood group genotyping in multi‑transfused patients.
Transfus Apher Sci 2013;48:257‑61.
da Costa DC, Pellegrino J Jr., Guelsin GA, Ribeiro KA,
Gilli SC, Castilho L, et al. Molecular matching of red blood cells
is superior to serological matching in sickle cell disease patients.
Rev Bras Hematol Hemoter 2013;35:35‑8.
Denomme GA. Prospects for the provision of genotyped blood
for transfusion. Br J Haematol 2013;163:3‑9.
Wagner FF. Why do we use serological blood group phenotype
determination in chronically transfused patients? Blood Transfus
;12:1‑2.
Belsito A, Costa D, Fiorito C, De Iorio G, Casamassimi A,
Perrotta S, et al. Erythrocyte genotyping for transfusion‑dependent
patients at the azienda universitaria policlinico of naples.
Transfus Apher Sci 2015;52:72‑7.
Avent ND. Large‑scale blood group genotyping: Clinical
implications. Br J Haematol 2009;144:3‑13.
Castilho L, Rios M, Bianco C, Pellegrino J Jr., Alberto FL,
Saad ST, et al. DNA‑based typing of blood groups for the
management of multiply‑transfused sickle cell disease patients.
Transfusion 2002;42:232‑8.
Castilho L, Rios M, Pellegrino J Jr., Saad S, Costa F. Blood
group genotyping facilitates transfusion of beta‑thalassemia
patients. J Clin Lab Anal 2002;16:216‑20.
McGowan EC, Lopez GH, Knauth CM, Liew YW, Condon JA,
Ramadi L, et al. Diverse and novel RHD variants in australian
blood donors with a weak D phenotype: Implication for
transfusion management. Vox Sang 2017;112:279‑87.
Moraes‑Souza H, Alves VM. Impact on patient of the detection
of weakly expressed RHD antigens in blood donors. Rev Bras
Hematol Hemoter 2015;37:290‑1.
Baumgarten R, van Gelder W, van Wintershoven J,
Maaskant‑Van Wijk PA, Beckers EA. Recurrent acute hemolytic
transfusion reactions by antibodies against doa antigens, not
detected by cross‑matching. Transfusion 2006;46:244‑9.
Chen Q, Li J, Xiao J, Du L, Li M, Yao G, et al. Molecular genetic
analysis and structure model of a rare B(A)02 subgroup of the
ABO blood group system. Transfus Apher Sci 2014;51:203‑8.
Lopez GH, Mcbean RS, Wilson B, Irwin DL, Liew YW,
Hyland CA, et al. Molecular typing for the indian blood group
associated 252G> C single nucleotide polymorphism in
a selected cohort of australian blood donors. Blood Transfus
;13:78‑85.
Boggione CT, Luján Brajovich ME, Mattaloni SM,
Di Mónaco RA, García Borrás SE, Biondi CS, et al. Genotyping
approach for non‑invasive foetal RHD detection in an admixed
population. Blood Transfus 2016;15:66‑73.
Papasavva T, Martin P, Legler TJ, Liasides M, Anastasiou G,
Christofides A, et al. Prevalence of RHD status and clinical
application of non‑invasive prenatal determination of fetal RHD
in maternal plasma: A 5 year experience in cyprus. BMC Res
Notes 2016;9:198.
Gassner C, Schmarda A, Kilga‑Nogler S, Jenny‑Feldkircher B,
Rainer E, Müller TH, et al. RHD/CE typing by polymerase
chain reaction using sequence‑specific primers. Transfusion
;37:1020‑6.
Gassner C, Schmarda A, Nussbaumer W, Schönitzer D. ABO
glycosyltransferase genotyping by polymerase chain reaction
using sequence‑specific primers. Blood 1996;88:1852‑6.
Heymann GA, Salama A. Sequence‑specific primers for MNS
blood group genotyping. Blood Transfus 2010;8:159‑62.
Prager M. Molecular genetic blood group typing by the use of
PCR‑SSP technique. Transfusion 2007;47:54S‑9S.
Rozman P, Dovc T, Gassner C. Differentiation of autologous
ABO, RHD, RHCE, KEL, JK, and FY blood group genotypes
by analysis of peripheral blood samples of patients who
have recently received multiple transfusions. Transfusion
;40:936‑42.
Schaffer M, Olerup O. HLA‑AB typing by polymerase‑chain
reaction with sequence‑specific primers: More accurate, less
errors, and increased resolution compared to serological typing.
Tissue Antigens 2001;58:299‑307.
Liu Z, Liu M, Mercado T, Illoh O, Davey R. Extended blood
group molecular typing and next‑generation sequencing. Transfus
Med Rev 2014;28:177‑86.
Tilley L, Grimsley S. Is next generation sequencing the future of
blood group testing? Transfus Apher Sci 2014;50:183‑8.
Johnsen JM. Using red blood cell genomics in transfusion
medicine. Hematology Am Soc Hematol Educ Program
;2015:168‑76.
Fichou Y, Audrézet MP, Guéguen P, Le Maréchal C, Férec C.
Next‑generation sequencing is a credible strategy for blood
group genotyping. Br J Haematol 2014;167:554‑62.
Seifried E, Mueller MM. The present and future of transfusion
medicine. Blood Transfus 2011;9:371‑6.
Chen JY, Scerbo M, Kramer G. A review of blood substitutes:
Examining the history, clinical trial results, and ethics of
hemoglobin‑based oxygen carriers. Clinics (Sao Paulo)
;64:803‑13.
Scott MG, Kucik DF, Goodnough LT, Monk TG. Blood
substitutes: Evolution and future applications. Clin Chem
;43:1724‑31.