The Potential Role of Pancreatic γ‑Aminobutyric Acid (GABA) in Diabetes Mellitus: A Critical Reappraisal
Abstract
Background: Diabetes mellitus (DM) is an endocrine disorder characterized by hyperglycemia, polyuria, polydipsia, and glucosuria. γ‑aminobutyric acid (GABA) is an inhibitory neurotransmitter in the central nervous system (CNS) of humans and other mammals. GABA acts on two different receptors, which are GABA‑A and GABA‑B. Pancreatic β‑cells synthesize GABA from glutamic acid by glutamic acid decarboxylase (GAD).
Aim: The objective of this study was to explore the potential role of pancreatic GABA on glycemic indices in DM.
Methods: Evidence from experimental, preclinical, and clinical studies are evaluated for bidirectional relationships between pancreatic GABA and blood glucose disorders. A multiplicity of search strategies took on and assumed included electronic database searches of Medline and Pubmed using MeSH terms, keywords and title words during the search.
Results: The pancreatic GABA signaling system has a role in the regulation of pancreatic hormone secretions, inhibition of immune response, improve β‑cells survival, and change α cell into β‑cell. Moreover, a GABA agonist improves the antidiabetic effects of metformin. In addition, benzodiazepine receptor agonists improve pancreatic β‑cell functions through GABA dependent pathway or through modulation of pancreatic adenosine and glucagon‑like peptide (GLP‑1).
Conclusions: Pancreatic GABA improves islet cell function, glucose homeostasis, and autoimmunity in DM. Orally administered GABA is safe for humans, and acts on peripheral GABA receptors and represents a new therapeutic modality for both T1DM and T2DM. Besides, GABA‑A receptor agonist like benzodiazepines improves pancreatic β‑cell function and insulin sensitivity through activation of GABA‑A receptors.
Keywords
Full Text:
PDFReferences
Al‑Kuraishy HM, Al‑Gareeb AI. Erectile dysfunction and low
sex drive in men with type 2 DM: The potential role of diabetic
pharmacotherapy. J Clin Diagn Res 2016;10:FC21‑6.
Al‑Kuraishy HM, Al‑Gareeb AI, Waheed HJ, Al‑Maiahy TJ.
Differential effect of metformin and/or glyburide on apelin
serum levels in patients with type 2 diabetes mellitus:
Concepts and clinical practice. J Adv Pharm Technol Res
;9:80‑6.
Talebi N, Nematbakhsh M, Monajemi R, Mazaheri S,
Talebi A, Vafapour M. The protective effect of γ‑aminobutyric
acid on kidney injury induced by renal ischemia‑reperfusion
in ovariectomized estradiol‑treated rats. Int J Prev Med
;7:6.
Korol SV, Jin Z, Jin Y, Bhandage AK, Tengholm A, Gandasi NR,
et al. Functional characterization of native, high‑affinity
GABAA receptors in human pancreatic β cells. EBioMedicine
;30:273‑82.
Pourmasoumi M, Vosoughi N, Derakhshandeh‑Rishehri SM,
Assarroudi M, Heidari‑Beni M. Association of Omega‑3 fatty
acid and epileptic seizure in epileptic patients: A systematic
review. Int J Prev Med 2018;9:36.
Korol SV, Jin Z, Babateen O, Birnir B. GLP‑1 and exendin‑4
transiently enhance GABAA receptor–mediated synaptic and
tonic currents in rat hippocampal CA3 pyramidal neurons.
Diabetes 2015;64:79‑89.
Wang C, Mao R, Van De Casteele M, Pipeleers D, Ling Z.
Glucagon‑like peptide‑1 stimulates GABA formation by
pancreatic β‑cells at the level of glutamate decarboxylase. Am J
Physiol Endocrinol Metab 2007;292:E1201‑6.
Gameiro A, Reimann F, Habib AM, O’malley D, Williams L,
Simpson AK, et al. The neurotransmitters glycine and GABA
stimulate glucagon-like peptide-1 release from the GLUTag cell
line. J Physiol 2005;569:761‑72.
Purwana I, Zheng J, Li X, Deurloo M, Son DO, Zhang Z, et al.
GABA promotes human β‑cell proliferation and modulates
glucose homeostasis. Diabetes 2014;63:4197‑205.
Mendu SK, Bhandage A, Jin Z, Birnir B. Different subtypes of
GABA‑A receptors are expressed in human, mouse and rat T
lymphocytes. PLoS One 2012;7:e42959.
Liu Y, Weng W, Wang S, Long R, Li H, Li H, et al. Effect of γ‑aminobutyric acid–chitosan nanoparticles on glucose
homeostasis in mice. ACS Omega 2018;3:2492‑7.
Schwirtlich M, Emri Z, Antal K, Máté Z, Katarova Z,
Szabó G. GABAA and GABAB receptors of distinct properties
affect oppositely the proliferation of mouse embryonic stem cells
through synergistic elevation of intracellular Ca2+. FASEB J
;24:1218‑28.
Brice NL, Varadi A, Ashcroft SJ, Molnar E. Metabotropic
glutamate and GABAB receptors contribute to the modulation
of glucose‑stimulated insulin secretion in pancreatic beta cells.
Diabetologia 2002;45:242‑52.
Ligon B, Yang J, Morin SB, Ruberti MF, Steer ML. Regulation
of pancreatic islet cell survival and replication by γ‑aminobutyric
acid. Diabetologia 2007;50:764‑73.
Bonaventura MM, Catalano PN, Chamson‑Reig A, Arany E,
Hill Dj, Bettler B, et al. GABAB receptors and glucose
homeostasis: Evaluation in GABAB receptor knock‑out mice.
Am J Physiol Endocrinol Metab 2008;294:E157‑67.
Wang Q, Ren L, Wan Y, Prud’homme GJ. GABAergic regulation
of pancreatic islet cells: Physiology and antidiabetic effects.
J Cell Physiol 2019. doi: 10.1002/jcp. 28214.
Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N,
et al. Intra‑islet insulin suppresses glucagon release via
GABA‑GABAA receptor system. Cell Metab 2006;3:47‑58.
Gromada J, Chabosseau P, Rutter GA. The α‑cell in diabetes
mellitus. Nat Rev Endocrinol 2018;14:694‑704.
Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, et al.
GABA exerts protective and regenerative effects on islet beta
cells and reverses diabetes. Proc Natl Acad Sci 2011;108:11692‑7.
Wan Y, Wang Q, Prud’homme GJ. GABAergic system in the
endocrine pancreas: A new target for diabetes treatment. Diabetes
Metab Syndr Obes 2015;8:79‑87.
Prud’homme GJ, Glinka Y, Kurt M, Liu W, Wang Q. The
anti‑aging protein Klotho is induced by GABA therapy and
exerts protective and stimulatory effects on pancreatic beta cells.
Biochem Biophys Res Commun 2017;493:1542‑7.
Donate‑Correa J, Martín‑Núñez E, Delgado NP, de Fuentes MM,
Arduan AO, Mora‑Fernández C, et al. Implications of Fibroblast
growth factor/Klotho system in glucose metabolism and diabetes.
Cytokine Growth Factor Rev 2016;28:71‑7.
Liu W, Jin T, Wang Q. 337‑LB: Combined oral administration
of GABA and GLP‑1 promotes human ß‑Cell proliferation and
reduces apoptosis. Diabetes 2019;68(Suppl 1). doi: 10.2337/
db19‑337‑LB.
Tian J, Dang H, Middleton B, Kaufman DL. Clinically applicable
GABA receptor positive allosteric modulators promote ß‑cell
replication. Sci Rep 2017;7:374.
Bjurstöm H, Wang J, Ericsson I, Bengtsson M, Liu Y,
Kumar‑Mendu S, et al. GABA, a natural immunomodulator of T
lymphocytes. J Neuroimmunol 2008;205:44‑50.
Johnson JD, Ao Z, Ao P, Li H, Dai LJ, He Z, et al. Different
effects of FK506, rapamycin, and mycophenolate mofetil on
glucose‑stimulated insulin release and apoptosis in human islets.
Cell Transplant 2009;18:833‑45.
Sadeghi A, Hami J, Razavi S, Esfandiary E, Hejazi Z. The effect
of diabetes mellitus on apoptosis in hippocampus: Cellular and
molecular aspects. Int J Prev Med 2016;7:57.
Sohrabipour S, Sharifi MR, Talebi A, Sharifi M, Soltani N.
GABA dramatically improves glucose tolerance in
streptozotocin‑induced diabetic rats fed with high‑fat diet. Eur J
Pharmacol 2018;826:75‑84.
Bharadwaj G, Satyanarayana V, Shabeer D, Vardhan GV. A study
of the effect of Baclofen on blood glucose level in alcohol
dependence syndrome (ADS) patients at a tertiary care hospital.
Indian J Pharm Pharmacol 2017;4:55‑61.
Taneera J, Jin Z, Jin Y, Muhammed SJ, Zhang E, Lang S, et al.
γ‑Aminobutyric acid (GABA) signalling in human pancreatic
islets is altered in type 2 diabetes. Diabetologia 2012;55:1985‑94.
Oda H, Okuda Y, Yoshida Y, Kimura N, Kakinuma A.
Phenobarbital reduces blood glucose and gluconeogenesis
through down‑regulation of phosphoenolpyruvate
carboxykinase (GTP) gene expression in rats. Biochem Biophys
Res Commun 2015;466:306‑11.
Yasujima T, Saito K, Moore R, Negishi M. Phenobarbital and
insulin reciprocate activation of the nuclear receptor constitutive
androstane receptor through the insulin receptor. J Pharmacol
Exp Ther 2016;357:367‑74.
Hedrington MS, Mikeladze M, Tate DB, Younk LM, Davis I,
Davis SN. Effects of γ‑aminobutyric acid a receptor activation on
counterregulatory responses to subsequent exercise in individuals
with type 1 diabetes. Diabetes 2016;65:2754‑9.
Garabadu D, Krishnamurthy S. Diazepam potentiates the
antidiabetic, antistress and anxiolytic activities of metformin in
type‑2 diabetes mellitus with cooccurring stress in experimental
animals. Biomed Res Int 2014;2014:693074.
Pintana H, Apaijai N, Pratchayasakul W, Chattipakorn N,
Chattipakorn SC. Effects of metformin on learning and memory
behaviors and brain mitochondrial functions in high fat diet
induced insulin resistant rats. Life Sci 2012;91:409‑14.
Untereiner A, Abdo S, Bhattacharjee A, Gohil H, Pourasgari F,
Ibeh N, et al. GABA promotes β‑cell proliferation, but does
not overcome impaired glucose homeostasis associated with
diet‑induced obesity. FASEB J 2018;30:fj‑201801397R.
Liu W, Son DO, Lau HK, Zhou Y, Prud’homme GJ, Jin T, et al.
Combined oral administration of GABA and DPP‑4 inhibitor
prevents beta cell damage and promotes beta cell regeneration in
mice. Front Pharmacol 2017;20;8:362.
Nzor JN, Uwakwe AA, Onuoha SC. Impact of benzodiazepines
administration on selected biochemical parameters of albino
Wistar rats (Rattus rattus). Egypt Pharm J 2018;17:40‑7.
Lee YJ, Kim M, Lee JY, Jung SH, Jeon HY, Lee SA,
et al. The benzodiazepine anesthetic midazolam prevents
hyperglycemia‑induced microvascular leakage in the retinas of
diabetic mice. FASEB J 2018;32:6089‑99.
Zhu Z, Shi Z, Xie C, Gong W, Hu Z, Peng Y. A novel
mechanism of Gamma‑aminobutyric acid (GABA) protecting
human umbilical vein endothelial cells (HUVECs) against
H2O2‑induced oxidative injury. Comp Biochem Physiol C:
Toxicol Pharmacol 2019;217:68‑75.
Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M,
et al. Artemisinins target GABAA receptor signaling and impair
α cell identity. Cell 2017;168:86‑100.
Toi N, Inaba M, Kurajoh M, Morioka T, Hayashi N, Hirota T,
et al. Improvement of glycemic control by treatment for
insomnia with suvorexant in type 2 diabetes mellitus. J Clin
Transl Endocrinol 2019;15:37‑44.
Khandelwal D, Dutta D, Chittawar S, Kalra S. Sleep disorders in type 2 diabetes. Indian J Endocrinol Metab 2017;21:758‑61.
Marselli L, Trincavelli L, Santangelo C, Lupi R, Del Guerra S,
Boggi U, et al. The role of peripheral benzodiazepine receptors
on the function and survival of isolated human pancreatic islets.
Eur J Endocrinol 2004;151:207‑14.
Park SY, Cho N, Chang I, Chung JH, Min YK, Lee MK, et al.
Effect of PK11195, a peripheral benzodiazepine receptor agonist,
on insulinoma cell death and insulin secretion. Apoptosis
;10:537‑44.
Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G.
Adenosine signalling in diabetes mellitus—pathophysiology
and therapeutic considerations. Nat Rev Endocrinol
;11:228‑41.
Sällström J, Carlsson PO, Fredholm BB, Larsson E, Persson AE, Palm F. Diabetes-induced hyperfiltration in adenosine
A1-receptor deficient mice lacking the tubuloglomerular
feedback mechanism. Acta Physiol 2007;190:253‑9.
Narimatsu E, Niiya T, Kawamata M, Namiki A. The mechanisms of depression by benzodiazepines, barbiturates and propofol of excitatory synaptic transmissions mediated by adenosine neuromodulation. Masui 2006;55:684‑91.