Quercetin Can Inhibit Angiogenesis via the Down Regulation of MALAT1 and MIAT LncRNAs in Human Umbilical Vein Endothelial Cells

Somayeh Esteghlal, Mohammad Javad Mokhtari, Zahra Beyzaei

Abstract


Background: Angiogenesis is an important step in cancer metastasis since it enables the growing tumor to receive nutrients and oxygen. Quercetin is a generic flavonoid and has been investigated for its ability to inhibit angiogenesis in different types of cancers. MALAT1 and MIAT lncRNAs are associated with the angiogenesis process. MALAT1 induces hypoxia‑driven angiogenesis via the overexpression of angiogenic genes. Down regulation of MIAT1 could inhibit the proliferation of endothelial cells, tube formation, and migration. In this study, we assessed the anti‑angiogenic activity of quercetin on human umbilical vein endothelial cells (HUVEC) via the expression of MALAT1 and MIAT genes.

Methods: In the present study, HUVEC cells were incubated with various concentrations of quercetin for 24, 48, and 72 h. Cell proliferation was then evaluated by MTT assay. RNA was extracted by TRIzol and cDNA synthesis. The expression levels of MALAT1 and MIAT genes relative to the GAPDH gene were quantified using the highly sensitive real‑time PCR method.

Results: Our results demonstrated that quercetin has an inhibitory impact on the cell viability of HUVEC cells. The IC50 values of quercetin after 24, 48, and 72 h were 282.05 µΜ, 228.25 µΜ, and 131.65 µΜ, respectively. The MALAT1/GAPDH ratio was computed as 0.21 for 24h, 0.18 for 48h, and 0.29 for 72 h. The MIAT/GAPDH ratio was computed as 0.82 for 24h, 0.84 for 48h, and 0.78 for 72 h.

Conclusions: In conclusion, quercetin treatment had an anti‑angiogenic effect on HUVEC cells, at least partially via the down regulation of MALAT1 and MIAT LncRNAs gene expression.


Keywords


Angiogenesis inhibitors; endothelial cells; long non‑coding RNA; quercetin

Full Text:

PDF

References


Rajabi M, Mousa SA. The role of angiogenesis in cancer

treatment. Biomedicines 2017;5:34.

Bielenberg DR, Zetter BR. The contribution of angiogenesis to

the process of metastasis. Cancer J 2015;21:267.

McMahon G. VEGF receptor signaling in tumor angiogenesis.

Oncologist 2000;5:3‑10.

Naumov GN, Folkman J, Straume O. Tumor dormancy due to

failure of angiogenesis: Role of the microenvironment. Clin Exp

Metastasis 2009;26:51‑60.

Halvorsen OJ, Haukaas S, Høisaeter PA, Akslen LA. Independent

prognostic importance of microvessel density in clinically

localized prostate cancer. Anticancer Res 2000;20:3791‑9.

Bhat TA, Singh RP. Tumor angiogenesis–a potential target in

cancer chemoprevention. Food Chem Toxicol 2008;46:1334‑45.

Bischoff SC. Quercetin: Potentials in the prevention and therapy

of disease. Curr Opin Clin Nutr Metab Care 2008;11:733‑40.

Murakami A, Ashida H, Terao J. Multitargeted cancer prevention

by quercetin. Cancer Lett 2008;269:315‑25.

Rajasekar J, Perumal MK, Vallikannan B. A critical review on

anti‑angiogenic property of phytochemicals. J Nutr Biochem

;71:1‑15.

Ahmed Z, Bicknell R. Angiogenic signalling pathways. Methods

Mol Biol 2009;467:3-24.

Yu B, Wang S. Angio‑LncRs: LncRNAs that regulate

angiogenesis and vascular disease. Theranostics 2018;8:3654‑75.

Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, et al.

MicroRNAs, long noncoding RNAs, and circular RNAs:

Potential tumor biomarkers and targets for colorectal cancer.

Cancer Management Res 2018;10:2249‑57.

Voellenkle C, Garcia‑Manteiga JM, Pedrotti S, Perfetti A,

De Toma I, Da Silva D, et al. Implication of Long noncoding

RNAs in the endothelial cell response to hypoxia revealed by

RNA‑sequencing. Sci Rep 2016;6:24141.

Yan B, Tao Z‑F, Li X‑M, Zhang H, Yao J, Jiang Q. Aberrant

expression of long noncoding RNAs in early diabetic retinopathy.

Invest Ophthalmol Vis Sci 2014;55:941‑51.

Singh KK, Matkar PN, Quan A, Mantella LE, Teoh H,

Al‑Omran M, et al. Investigation of TGFβ1‑induced long

noncoding RNAs in endothelial cells. Int J Vasc Med

;2016:2459687.

Zhang X, Tang X, Hamblin MH, Yin KJ. Long non‑coding RNA Malat1 regulates angiogenesis in hindlimb ischemia. Int J Mol

Sci 2018;19:1723.

Bai Y, Wang W, Zhang Y, Zhang F, Zhang H. lncRNA MIAT

suppression alleviates corneal angiogenesis through regulating

miR‑1246/ACE. Cell Cycle 2019;18:661‑9.

Mokhtari MJ, Motamed N, Shokrgozar MA. Evaluation

of silibinin on the viability, migration and adhesion of the

human prostate adenocarcinoma (PC‑3) cell line. Cell Biol Int

;32:888‑92.

Kittl M, Beyreis M, Tumurkhuu M, Fuerst J, Helm K,

Pitschmann A, et al. Quercetin stimulates insulin secretion

and reduces the viability of rat INS‑1 beta‑cells. Cell Physiol

Biochem 2016;39:278‑93.

Pereira DF, Cazarolli LH, Lavado C, Mengatto V,

Figueiredo MSRB, Guedes A, et al. Effects of flavonoids on

α‑glucosidase activity: Potential targets for glucose homeostasis.

Nutrition 2011;27:1161‑7.

Rahimmi A, Peluso I, Rajabi A, Hassanzadeh K. miR‑185

and SEPT5 genes may contribute to Parkinson’s disease

pathophysiology. Oxid Med Cell Longev 2019;2019:5019815.

Asgari R, Bakhtiari M, Rezazadeh D, Vaisi‑Raygani A,

Mansouri K. Autophagy related genes expression status in

patients diagnosed with azoospermia: A cross‑sectional study.

J Gene Med 2020:22:e3161.

Mokhtari MJ, Koohpeima F, Mohammadi H. A comparison

inhibitory effects of cisplatin and MNPs‑PEG‑cisplatin on the

adhesion capacity of bone metastatic breast cancer. Chem Biol

Drug Des 2017;90:618‑28.

Mokhtari MJ, Akbarzadeh A, Hashemi M, Javadi G, Mahdian R,

Ghasemi S, et al. Cisplatin induces up‑regulation of KAI1, a

metastasis suppressor gene, in MCF‑7 breast cancer cell line.

Trop J Pharm Res 2012;11:523‑9.

García‑Lafuente A, Guillamón E, Villares A, Rostagno MA,

Martínez JA. Flavonoids as anti‑inflammatory agents:

Implications in cancer and cardiovascular disease. Inflamm Res

;58:537‑52.

Yao H, Xu W, Shi X, Zhang Z. Dietary flavonoids as cancer

prevention agents. J Environ Sci Health C Environ Carcinog

Ecotoxicol Rev 2011;29:1‑31.

Pan F, Zhu L, Lv H, Pei C. Quercetin promotes the apoptosis

of fibroblast‑like synoviocytes in rheumatoid arthritis by

upregulating lncRNA MALAT1. Int J Mol Med 2016;38:1507‑14.

Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K,

Taghdisi SM, et al. Anticancer and apoptosis‑inducing effects of

quercetin in vitro and in vivo. Oncology Reports 2017;38:819-28.

Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in

human tumor dormancy: Animal models of the angiogenic

switch. Cell Cycle 2006;5:1779‑87.

Bhat TA, Nambiar D, Tailor D, Pal A, Agarwal R, Singh RP.

Acacetin inhibits in vitro and in vivo angiogenesis and

downregulates Stat signaling and VEGF expression. Cancer Prev

Res 2013;6:1128‑39.

Gu N, Wang J, Di Z, Liu Z, Jia X, Yan Ye, et al. The effects of

intelectin‑1 on antioxidant and angiogenesis in HUVECs exposed

to oxygen glucose deprivation. Front Neurol 2019;10:383.

Shi B, Andrukhov O, Berner S, Schedle A, Rausch‑Fan X.

The angiogenic behaviors of human umbilical vein endothelial

cells (HUVEC) in co‑culture with osteoblast‑like cells (MG‑63)

on different titanium surfaces. Dent Mater 2014;30:839‑47.

Gutschner T, Hämmerle M, Diederichs S. MALAT1—a

paradigm for long noncoding RNA function in cancer. J Mol

Med 2013;91:791‑801.

Liu J, Yao J, Li X, Song Y, Wang X, Li Y, et al. Pathogenic role

of lncRNA‑MALAT1 in endothelial cell dysfunction in diabetes

mellitus. Cell Death Dis 2014;5:e1506.

Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM,

Wu X, et al. Long noncoding RNA MALAT1 controls cell

cycle progression by regulating the expression of oncogenic

transcription factor B‑MYB. PLoS Genet 2013;9:e1003368.

Kumar M, Goyal R. LncRNA as a therapeutic target for

angiogenesis. Curr Top Med Chem 2017;17:1750‑7.

Liu W, Wang Z, Wang C, Ai Z. Long non‑coding RNA

MIAT promotes papillary thyroid cancer progression through

upregulating LASP1. Cancer Cell Int 2019;19:194.

Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, et al.

Identification of a novel non‑coding RNA, MIAT, that confers

risk of myocardial infarction. J Hum Genet 2006;51:1087‑99.

Matsubara K, Ishihara K, Mizushina Y, Mori M, Nakajima N.

Anti‑angiogenic activity of quercetin and its derivatives. Lett

Drug Des Discov 2004;1:329‑33.

Pratheeshkumar P, Budhraja A, Son Y‑O, Wang X, Zhang Z,

Ding S, et al. Quercetin inhibits angiogenesis mediated human

prostate tumor growth by targeting VEGFR‑2 regulated AKT/

mTOR/P70S6K signaling pathways. PloS One 2012;7:e47516.

Zhao X, Wang Q, Yang S, Chen C, Li X, Liu J, et al. Quercetin

inhibits angiogenesis by targeting calcineurin in the xenograft

model of human breast cancer. Eur J Pharmacol 2016;781:60‑8.

Maurya AK, Vinayak M. Quercetin attenuates cell survival,

inflammation, and angiogenesis via modulation of AKT signaling

in murine T‑cell lymphoma. Nutr Cancer 2017;69:470‑80.

Liu Y, Tang Z‑G, Yang J‑Q, Zhou Y, Meng L‑H, Wang H, et al.

Low concentration of quercetin antagonizes the invasion and

angiogenesis of human glioblastoma U251 cells. Onco Targets

Ther 2017;10:4023‑8.




ijpm_12_448