Quercetin Can Inhibit Angiogenesis via the Down Regulation of MALAT1 and MIAT LncRNAs in Human Umbilical Vein Endothelial Cells
Abstract
Background: Angiogenesis is an important step in cancer metastasis since it enables the growing tumor to receive nutrients and oxygen. Quercetin is a generic flavonoid and has been investigated for its ability to inhibit angiogenesis in different types of cancers. MALAT1 and MIAT lncRNAs are associated with the angiogenesis process. MALAT1 induces hypoxia‑driven angiogenesis via the overexpression of angiogenic genes. Down regulation of MIAT1 could inhibit the proliferation of endothelial cells, tube formation, and migration. In this study, we assessed the anti‑angiogenic activity of quercetin on human umbilical vein endothelial cells (HUVEC) via the expression of MALAT1 and MIAT genes.
Methods: In the present study, HUVEC cells were incubated with various concentrations of quercetin for 24, 48, and 72 h. Cell proliferation was then evaluated by MTT assay. RNA was extracted by TRIzol and cDNA synthesis. The expression levels of MALAT1 and MIAT genes relative to the GAPDH gene were quantified using the highly sensitive real‑time PCR method.
Results: Our results demonstrated that quercetin has an inhibitory impact on the cell viability of HUVEC cells. The IC50 values of quercetin after 24, 48, and 72 h were 282.05 µΜ, 228.25 µΜ, and 131.65 µΜ, respectively. The MALAT1/GAPDH ratio was computed as 0.21 for 24h, 0.18 for 48h, and 0.29 for 72 h. The MIAT/GAPDH ratio was computed as 0.82 for 24h, 0.84 for 48h, and 0.78 for 72 h.
Conclusions: In conclusion, quercetin treatment had an anti‑angiogenic effect on HUVEC cells, at least partially via the down regulation of MALAT1 and MIAT LncRNAs gene expression.
Keywords
Full Text:
PDFReferences
Rajabi M, Mousa SA. The role of angiogenesis in cancer
treatment. Biomedicines 2017;5:34.
Bielenberg DR, Zetter BR. The contribution of angiogenesis to
the process of metastasis. Cancer J 2015;21:267.
McMahon G. VEGF receptor signaling in tumor angiogenesis.
Oncologist 2000;5:3‑10.
Naumov GN, Folkman J, Straume O. Tumor dormancy due to
failure of angiogenesis: Role of the microenvironment. Clin Exp
Metastasis 2009;26:51‑60.
Halvorsen OJ, Haukaas S, Høisaeter PA, Akslen LA. Independent
prognostic importance of microvessel density in clinically
localized prostate cancer. Anticancer Res 2000;20:3791‑9.
Bhat TA, Singh RP. Tumor angiogenesis–a potential target in
cancer chemoprevention. Food Chem Toxicol 2008;46:1334‑45.
Bischoff SC. Quercetin: Potentials in the prevention and therapy
of disease. Curr Opin Clin Nutr Metab Care 2008;11:733‑40.
Murakami A, Ashida H, Terao J. Multitargeted cancer prevention
by quercetin. Cancer Lett 2008;269:315‑25.
Rajasekar J, Perumal MK, Vallikannan B. A critical review on
anti‑angiogenic property of phytochemicals. J Nutr Biochem
;71:1‑15.
Ahmed Z, Bicknell R. Angiogenic signalling pathways. Methods
Mol Biol 2009;467:3-24.
Yu B, Wang S. Angio‑LncRs: LncRNAs that regulate
angiogenesis and vascular disease. Theranostics 2018;8:3654‑75.
Yang S, Sun Z, Zhou Q, Wang W, Wang G, Song J, et al.
MicroRNAs, long noncoding RNAs, and circular RNAs:
Potential tumor biomarkers and targets for colorectal cancer.
Cancer Management Res 2018;10:2249‑57.
Voellenkle C, Garcia‑Manteiga JM, Pedrotti S, Perfetti A,
De Toma I, Da Silva D, et al. Implication of Long noncoding
RNAs in the endothelial cell response to hypoxia revealed by
RNA‑sequencing. Sci Rep 2016;6:24141.
Yan B, Tao Z‑F, Li X‑M, Zhang H, Yao J, Jiang Q. Aberrant
expression of long noncoding RNAs in early diabetic retinopathy.
Invest Ophthalmol Vis Sci 2014;55:941‑51.
Singh KK, Matkar PN, Quan A, Mantella LE, Teoh H,
Al‑Omran M, et al. Investigation of TGFβ1‑induced long
noncoding RNAs in endothelial cells. Int J Vasc Med
;2016:2459687.
Zhang X, Tang X, Hamblin MH, Yin KJ. Long non‑coding RNA Malat1 regulates angiogenesis in hindlimb ischemia. Int J Mol
Sci 2018;19:1723.
Bai Y, Wang W, Zhang Y, Zhang F, Zhang H. lncRNA MIAT
suppression alleviates corneal angiogenesis through regulating
miR‑1246/ACE. Cell Cycle 2019;18:661‑9.
Mokhtari MJ, Motamed N, Shokrgozar MA. Evaluation
of silibinin on the viability, migration and adhesion of the
human prostate adenocarcinoma (PC‑3) cell line. Cell Biol Int
;32:888‑92.
Kittl M, Beyreis M, Tumurkhuu M, Fuerst J, Helm K,
Pitschmann A, et al. Quercetin stimulates insulin secretion
and reduces the viability of rat INS‑1 beta‑cells. Cell Physiol
Biochem 2016;39:278‑93.
Pereira DF, Cazarolli LH, Lavado C, Mengatto V,
Figueiredo MSRB, Guedes A, et al. Effects of flavonoids on
α‑glucosidase activity: Potential targets for glucose homeostasis.
Nutrition 2011;27:1161‑7.
Rahimmi A, Peluso I, Rajabi A, Hassanzadeh K. miR‑185
and SEPT5 genes may contribute to Parkinson’s disease
pathophysiology. Oxid Med Cell Longev 2019;2019:5019815.
Asgari R, Bakhtiari M, Rezazadeh D, Vaisi‑Raygani A,
Mansouri K. Autophagy related genes expression status in
patients diagnosed with azoospermia: A cross‑sectional study.
J Gene Med 2020:22:e3161.
Mokhtari MJ, Koohpeima F, Mohammadi H. A comparison
inhibitory effects of cisplatin and MNPs‑PEG‑cisplatin on the
adhesion capacity of bone metastatic breast cancer. Chem Biol
Drug Des 2017;90:618‑28.
Mokhtari MJ, Akbarzadeh A, Hashemi M, Javadi G, Mahdian R,
Ghasemi S, et al. Cisplatin induces up‑regulation of KAI1, a
metastasis suppressor gene, in MCF‑7 breast cancer cell line.
Trop J Pharm Res 2012;11:523‑9.
García‑Lafuente A, Guillamón E, Villares A, Rostagno MA,
Martínez JA. Flavonoids as anti‑inflammatory agents:
Implications in cancer and cardiovascular disease. Inflamm Res
;58:537‑52.
Yao H, Xu W, Shi X, Zhang Z. Dietary flavonoids as cancer
prevention agents. J Environ Sci Health C Environ Carcinog
Ecotoxicol Rev 2011;29:1‑31.
Pan F, Zhu L, Lv H, Pei C. Quercetin promotes the apoptosis
of fibroblast‑like synoviocytes in rheumatoid arthritis by
upregulating lncRNA MALAT1. Int J Mol Med 2016;38:1507‑14.
Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K,
Taghdisi SM, et al. Anticancer and apoptosis‑inducing effects of
quercetin in vitro and in vivo. Oncology Reports 2017;38:819-28.
Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in
human tumor dormancy: Animal models of the angiogenic
switch. Cell Cycle 2006;5:1779‑87.
Bhat TA, Nambiar D, Tailor D, Pal A, Agarwal R, Singh RP.
Acacetin inhibits in vitro and in vivo angiogenesis and
downregulates Stat signaling and VEGF expression. Cancer Prev
Res 2013;6:1128‑39.
Gu N, Wang J, Di Z, Liu Z, Jia X, Yan Ye, et al. The effects of
intelectin‑1 on antioxidant and angiogenesis in HUVECs exposed
to oxygen glucose deprivation. Front Neurol 2019;10:383.
Shi B, Andrukhov O, Berner S, Schedle A, Rausch‑Fan X.
The angiogenic behaviors of human umbilical vein endothelial
cells (HUVEC) in co‑culture with osteoblast‑like cells (MG‑63)
on different titanium surfaces. Dent Mater 2014;30:839‑47.
Gutschner T, Hämmerle M, Diederichs S. MALAT1—a
paradigm for long noncoding RNA function in cancer. J Mol
Med 2013;91:791‑801.
Liu J, Yao J, Li X, Song Y, Wang X, Li Y, et al. Pathogenic role
of lncRNA‑MALAT1 in endothelial cell dysfunction in diabetes
mellitus. Cell Death Dis 2014;5:e1506.
Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM,
Wu X, et al. Long noncoding RNA MALAT1 controls cell
cycle progression by regulating the expression of oncogenic
transcription factor B‑MYB. PLoS Genet 2013;9:e1003368.
Kumar M, Goyal R. LncRNA as a therapeutic target for
angiogenesis. Curr Top Med Chem 2017;17:1750‑7.
Liu W, Wang Z, Wang C, Ai Z. Long non‑coding RNA
MIAT promotes papillary thyroid cancer progression through
upregulating LASP1. Cancer Cell Int 2019;19:194.
Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, et al.
Identification of a novel non‑coding RNA, MIAT, that confers
risk of myocardial infarction. J Hum Genet 2006;51:1087‑99.
Matsubara K, Ishihara K, Mizushina Y, Mori M, Nakajima N.
Anti‑angiogenic activity of quercetin and its derivatives. Lett
Drug Des Discov 2004;1:329‑33.
Pratheeshkumar P, Budhraja A, Son Y‑O, Wang X, Zhang Z,
Ding S, et al. Quercetin inhibits angiogenesis mediated human
prostate tumor growth by targeting VEGFR‑2 regulated AKT/
mTOR/P70S6K signaling pathways. PloS One 2012;7:e47516.
Zhao X, Wang Q, Yang S, Chen C, Li X, Liu J, et al. Quercetin
inhibits angiogenesis by targeting calcineurin in the xenograft
model of human breast cancer. Eur J Pharmacol 2016;781:60‑8.
Maurya AK, Vinayak M. Quercetin attenuates cell survival,
inflammation, and angiogenesis via modulation of AKT signaling
in murine T‑cell lymphoma. Nutr Cancer 2017;69:470‑80.
Liu Y, Tang Z‑G, Yang J‑Q, Zhou Y, Meng L‑H, Wang H, et al.
Low concentration of quercetin antagonizes the invasion and
angiogenesis of human glioblastoma U251 cells. Onco Targets
Ther 2017;10:4023‑8.