The Effects of Exercise on Cerebellar Growth‑Associated Protein 43 and Adenylyl Cyclase‑ Associated Protein 1 Gene Expression and Proteins in Diabetic‑Induced Neuropathy and Healthy Male Wistar Rats
Abstract
Keywords
Full Text:
PDFReferences
Vinik AI, Mehrabyan A. Diabetic neuropathies. Med Clin North
Am 2004;88:947‑99.
Argoff CE, Cole BE, Fishbain DA, Irving GA. Diabetic
peripheral neuropathic pain: Clinical and quality‑of‑life issues.
Mayo Clin Proc 2006;81:3‑11.
Selvarajah D, Wilkinson ID, Davies J, Gandhi R, Tesfaye S.
Central nervous system involvement in diabetic neuropathy. Curr
Diab Rep 2011;11:310‑22.
Bredfeldt C, Altschuler A, Adams AS, Portz JD, Bayliss EA.
Patient reported outcomes for diabetic peripheral neuropathy.
J Diabetes Complications 2015;29:1112‑8.
Therrien AS, Bastian AJ. Cerebellar damage impairs internal
predictions for sensory and motor function. Curr Opin Neurobiol
;33:127‑33.
Hernández‑Fonseca JP, Rincón J, Pedreañez A, Viera N,
Arcaya JL, Carrizo E, et al. Structural and ultrastructural analysis
of cerebral cortex, cerebellum, and hypothalamus from diabetic
rats. Exp Diabetes Res 2009;2009:329632.
Peeyush KT, Gireesh G, Jobin M, Paulose CS. Neuroprotective
role of curcumin in the cerebellum of streptozotocin‑induced
diabetic rats. Life Sci 2009;85:704‑10.
Ozdemir NG, Akbas F, Kotil TU, Yılmaz A. Analysis of diabetes
related cerebellar changes in streptozotocin‑induced diabetic rats.
Turk J Med Sci 2016;46:1579‑92.
Morita S, Miyata S. Synaptic localization of growthassociated protein 43 in cultured hippocampal neurons during
synaptogenesis. Cell Biochem Funct 2013;31:400‑11.
Grasselli G, Strata P. Structural plasticity of climbing fibers and
the growth‑associated protein GAP‑43. Front Neural Circuits
;7:25.
Carriel V, Garzón I, Campos A, Cornelissen M, Alaminos M.
Differential expression of GAP-43 and neurofilament during
peripheral nerve regeneration through bio-artificial conduits.
J Tissue Eng Regen Med 2017;11:553‑63.
Nozumi M, Togano T, Takahashi‑Niki K, Lu J, Honda A,
Taoka M, et al. Identification of functional marker proteins in the
mammalian growth cone. Proc Natl Acad Sci 2009;106:17211‑6.
Onodera N, Kakehata A, Araki I. Differential expression of
GAP‑43 protein in the rostral brain neurons of early chick
embryos. Tohoku J Exp Med 2013;231:293‑8.
Zhou J, Wang L, Ling S, Zhang X. Expression changes of
growth‑associated protein‑43 (GAP‑43) and mitogen‑activated
protein kinase phosphatase‑1 (MKP‑1) and in hippocampus of
streptozotocin‑induced diabetic cognitive impairment rats. Exp
Neuro 2007;206:201‑8.
Bursova S, Dubovy P, Vlckova‑Moravcova E, Nemec M,
Klusakova I, Belobradkova J, et al. Expression of
growth‑associated protein 43 in the skin nerve fibers of patients
with type 2 diabetes mellitus. J Neurol Sci 2012;315:60‑3.
Zhang H, Liu Y, Li Y, Zhou Y, Chen D, Shen J, et al. The
expression of CAP1 after traumatic brain injury and its role in
astrocyte proliferation. J Mol Neurosci 2014;54:653‑63.
Lu J, Nozumi M, Takeuchi K, Abe H, Igarashi M. Expression
and function of neuronal growth‑associated proteins (nGAPs) in
PC12 cells. Neurosci Res 2011;70:85‑90.
Lee S, Lee HC, Kwon YW, Lee SE, Cho Y, Kim J, et al.
Adenylyl cyclase‑associated protein 1 is a receptor for human
resistin and mediates inflammatory actions of human monocytes.
Cell Metab 2014;19:484‑97.
Sheng CH, Di J, Jin Y, Zhang YC, Wu M, Sun Y, et al. Resistin
is expressed in human hepatocytes and induces insulin resistance.
Endocrine 2008;33:135‑43.
Malysz T, Ilha J, Nascimento PS, Angelis KD, Schaan BD,
Achaval M. Beneficial effects of treadmill training in experimental
diabetic nerve regeneration. Clinics 2010;65:1329‑37.
Selagzi H, Buyukakilli B, Cimen B, Yilmaz N, Erdogan S.
Protective and therapeutic effects of swimming exercise training
on diabetic peripheral neuropathy of streptozotocin‑induced
diabetic rats. J Endocrinol Invest 2008;31:971‑8.
Black JE, Isaacs KR, Anderson BJ, Alcantara AA,
Greenough WT. Learning causes synaptogenesis, whereas motor
activity causes angiogenesis, in cerebellar cortex of adult rats.
Proc Natl Acad Sci USA 87:5568‑72.
Rauf S, Soejono SK, Partadiredja G. Effects of treadmill exercise
training on cerebellar estrogen and estrogen receptors, serum
estrogen, and motor coordination performance of ovariectomized
rats. Iran J Basic Med Sci 2015;18:587‑92.
Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S,
Meeusen R, et al. Spatial memory is improved by aerobic and
resistance exercise through divergent molecular mechanisms.
Neuroscience 2012;202:309‑17.
Lista I, Sorrentino G. Biological mechanisms of physical
activity in preventing cognitive decline. Cell Mol Neurobiol
;30:493‑503.
Park SJ. The effects of exercise of diverse intensities on the
expression of TNF‑α in the spinal cord in osteoarthritic rats.
J Korean Soc Phys Med 2013;8:539‑47.
Cheon SH, Koo HM. Spontaneous and forced exercise promotes
cognitive function and expression of GAP‑43 and NT‑3 in the
hippocampus of aged rats. J Phys Ther Sci 2013;25:321‑4.
Park SJ, Jung NJ, Na SS. The effects of exercise on the GAP‑43
expression in the spinal cord of arthritis‑induced rats. J Phys
Ther Sci 2016;28:2921‑3.
Ma XQ, Qin J, Li HY, Yan XL, Zhao Y, Zhang LJ. Role of
exercise activity in alleviating neuropathic pain in diabetes via
inhibition of the pro‑inflammatory signal pathway Biol Res Nurs
;21:14‑21.
Cheng Z, Teo G, Krueger S, Rock TM, Koh HW, Choi H,
et al. Differential dynamics of the mammalian mRNA and
protein expression response to misfolding stress. Mol Syst Biol
;12:855.
Zhang M, Lv XY, Li J, Xu ZG, Chen L. The characterization of
high‑fat diet and multiple low‑dose streptozotocin induced type 2
diabetes rat model. Exp Diabetes Res 2008;2008:704045.
Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P.
Combination of high‑fat diet‑fed and low‑dose
streptozotocin‑treated rat: A model for type 2 diabetes and
pharmacological screening. Pharmacol Res 2005;52:313‑20.
Li F, Szabo C, Pacher P, Southan GJ, Abatan OI, Charniauskaya T,
et al. Evaluation of orally active poly (ADP‑ribose) polymerase
inhibitor in streptozotocin‑diabetic rat model of early peripheral
neuropathy. Diabetologia 2004;47:710‑7.
Kregel KC, Allen DL, Booth FW, Fleshner MR, Henriksen EJ,
Musch TI, et al. Resource book for the design of animal exercise
protocols. Am Physiol Soc 2006;152.(ebook).
Edwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic
neuropathy: Mechanisms to management. Pharmacol Ther
;120:1‑34.
Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic
neuropathy: Where are we now and where to go? J Diabetes
Investig 2011;2:18‑32.
Magalhães PM, Appell HJ, Duarte JA. Involvement of
advanced glycation end products in the pathogenesis of diabetic
complications: The protective role of regular physical activity.
J Exerc Nutrition Biochem 2017;21:55‑61.
Rahmati M, Kazemi A. Various exercise intensities differentially
regulate GAP‑43 and CAP‑1 expression in the rat hippocampus.
Gene 2019;692:185‑94.
Liu Y, Beyer A, Aebersold R. On the dependency of cellular
protein levels on mRNA abundance. Cell 2016;165:535‑50.
Gordon T, You S, Cassar SL, Tetzlaff W. Reduced expression of
regeneration associated genes in chronically axotomized facial
motoneurons. Exp Neurol 2015;264:26‑32.
Chen MJ, Russo‑Neustadt AA. Running exercise‑and antidepressant‑induced increases in growth and
survival‑associated signaling molecules are IGF‑dependent.
Growth Factors 2007;25:118‑31.
Fernandes J, Baliego LG, Peixinho‑Pena LF, de Almeida AA,
Venancio DP, Scorza FA, et al. Aerobic exercise attenuates
inhibitory avoidance memory deficit induced by paradoxical
sleep deprivation in rats. Brain Res 2013;1529:66‑73.
Mizutani K, Sonoda S, Yamada K, Beppu H, Shimpo K.
Alteration of protein expression profile following voluntary
exercise in the perilesional cortex of rats with focal cerebral
infarction. Brain Res 2011;1416:61‑8.
Holahan MR. A shift from a pivotal to supporting role for the
growth‑associated protein (GAP‑43) in the coordination of
axonal structural and functional plasticity. Front Cell Neurosci
;11:266.
Beyer A, Hollunder J, Nasheuer HP, Wilhelm T.
Post‑transcriptional expression regulation in the yeast
Saccharomyces cerevisiae on a genomic scale. Mol Cell
Proteomics 2004;3:1083‑92.
Jovanovic M, Rooney MS, Mertins P, Przybylski D, Chevrier N,
Satija R, et al. Dynamic profiling of the protein life cycle in
response to pathogens. Science 2015;347:1259038.