Hepatoprotective Properties of Water Kefir: A Traditional Fermented Drink and Its Potential Role

Widhya Aligita, Marlia Singgih, Entris Sutrisno, I. K. Adnyana

Abstract


The liver is extremely vulnerable to damage because of its role in metabolism. Toxin, metabolic syndrome, alcohol, microorganisms, and autoimmune diseases can be the cause of liver damage. While different etiologies can cause liver disease, pathophysiologically, there are similarities in the role of free radicals, inflammatory mediators, and gut microbiome during the disease development. Therefore, ingredients with antioxidant, antiinflammatory, and antidysbiotic properties have the potential to act as hepatoprotectors; and water kefir is one of them. Water kefir is a traditional fermented drink made from water kefir grains, sugar, and dried fruit. Water kefir is dominated by lactic acid bacteria and yeast as a fermented beverage, and several species of this group of microorganisms have been shown as probiotics. According to researches, water kefir has strong antioxidant, antiinflammatory, and hepatoprotective effects. Even so, there are still few researches reported about water kefir as a hepatoprotective agent. Several studies, on the other hand, showed promising results. This review discusses the relationship between the pathophysiology of liver disease and the pharmacological activity of water kefir and other probiotics in general, which leads to the potential prospect of water kefir research as a hepatoprotective agent.

Keywords


Antioxidant; hepatoprotector; inflammation; probiotic; water kefir

Full Text:

PDF

References


Radu‑Ionita F, Pyrsopoulos NT, Jinga M, Tintoiu IC, Sun Z,

Bontas E. Liver Disease. Springer Nature Switzerland AG; 2020.

Ramadori G, Moriconi F, Malik I, Dudas J. Physiology and

pathophysiology of liver inflammation, damage and repair.

J Physiol Pharmacol 2008;59(Suppl. 1):107‑17.

Rehm J, Samokhvalov AV, Shield KD. Global burden of

alcoholic liver diseases. J Hepatol 2013;59:160‑8.

Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver

diseases in the world. J Hepatol 2019;70:151‑71.

Mokdad A, Lopez A, Shahraz S, Lozano R, Mokdad A,

Stanaway J, et al. Liver cirrhosis mortality in 187 countries

between 1980 and 2010: A systematic analysis. BMC Med

;12:145.

Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K,

Aboyans V, et al. Global and regional mortality from 235 causes

of death for 20 age groups in 1990 and 2010: A systematic

analysis for the Global Burden of Disease Study 2010. Lancet

;380:2095‑128.

Asrani SK, Larson JJ, Yawn B, Therneau TM, Kim RW.

Underestimation of liver‑related mortality in the United States.

Gastroenterology 2013;145:375‑82.

Osna NA, Donohue TM, Kharbanda KK. Alcoholic liver

disease: Pathogenesis and current management. Alcohol Res

;38:147‑61.

Aligita W, Tarigan P, Susilawati E. Anti inflammatory and

antioxidant activity of kefir water. Int J Biol Pharmacy Allied Sci

;9:2454‑64.

Alsayadi M, Jawfi Y Al, Belarbi M. Antioxidant potency of

water kefir. J Microbiol Biotechnol Food Sci 2016;6:2444‑7.

Aspiras BEE, Flores R, Pareja MC. Hepatoprotective effect of

fermented water kefir on sprague‑dawley rats (rattus norvegicus)

induced with sublethal dose of Acetaminophen. Int J Curr Sci

;17:18‑28.

Aligita W, Alex V, Taaraungan S, Susilawati E. Hepatoprotective

activity of water kefir. Int J Biol Pharmacy Allied Sci

;10:1784‑94.

Neve H, Heller KJ. The microflora of water kefir: A glance

by scanning electron microscopy. Kieler Milchwirtsch

Forschungsberichte 2002;54:337‑49.

Gulitz A, Stadie J, Wenning M, Ehrmann MA, Vogel RF.

The microbial diversity of water kefir. Int J Food Microbiol

;151:284‑8.

Laureys D, De Vuyst L. Microbial species diversity, community

dynamics, and metabolite kinetics of water Kefir fermentation.

Appl Environ Microbiol 2014;80:2564‑72.

Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD.

Sequence‑based analysis of the microbial composition of

water kefir from multiple sources. FEMS Microbiol Lett

;348:79‑85.

Verce M, De Vuyst L, Weckx S. Shotgun metagenomics of a

water kefir fermentation ecosystem reveals a novel oenococcus

species. Front Microbiol 2019;10:479. doi: 10.3389/fmicb.

00479.

Alsayadi M, Jawfi Y Al, Belarbi M, Soualem‑Mami Z,

Merzouk H, Sari DC, et al. Evaluation of anti‑hyperglycemic

and anti‑hyperlipidemic activities of water kefir as probiotic on

streptozotocin‑induced diabetic wistar rats. J Diabetes Mellit

;04:85‑95.

Das J. Liver disease pathophysiology. Clin Pharm 2011;3:140‑4.

Dong V, Nanchal R, Karvellas CJ. Pathophysiology of acute

liver failure. Nutr Clin Pract 2020;35:24‑9.

Böttcher K, Pinzani M. Pathophysiology of liver fibrosis and the

methodological barriers to the development of anti‑fibrogenic

agents. Adv Drug Deliv Rev 2017;121:3‑8.

Moreira RK. Hepatic stellate cells and liver fibrosis. Compr

Physiol 2013;3:1473‑92.

Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The

role of oxidative stress and antioxidants in liver diseases. Int J

Mol Sci 2015;16:26087‑124.

Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N.

Acetaminophen‑induced hepatotoxicity: A comprehensive update.

J Clin Transl Hepatol 2016;4:131‑42.

Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic

target in alcohol‑related liver disease. J Hepatol 2019;70:260‑72.

Schwenger KJ, Clermont‑Dejean N, Allard JP. The role of the

gut microbiome in chronic liver disease: the clinical evidence

revised. JHEP Reports 2019;1:214‑26.

Schwimmer JB, Johnson JS, Angeles JE, Behling C, Belt PH,

Borecki I, et al. Microbiome signatures associated with

steatohepatitis and moderate to severe fibrosis in children

with nonalcoholic fatty liver disease. Gastroenterology 2019;157:1109‑22.

Schnabl B, Brenner DA. Interactions between the

intestinal microbiome and liver diseases. Gastroenterology

;146:1513‑24.

Ward HM. V. The ginger‑beer plant, and the organisms

composing it: A contribution to the study of fermentation‑yeasts

and bacteria. Philos Trans R Soc London B 1892;183:125‑97.

Moinas M, Horisberger M, Bauer H. The structural organization

of the tibi grain as revealed by light, scanning and transmission

microscopy. Arch Microbiol 1980;128:157‑61.

Kebler L. California bees. J Am Pharm Assoc 1921;10:939‑43.

Pidoux M. kefir‑grain‑flora.pdf. Mircen J 1989;5:223‑38.

Laureys D, De Vuyst L. Water kefir as a promising low‑sugar

probiotic fermented beverage. Arch Public Heal 2014;72:P1. doi:

1186/2049‑3258‑72‑S1‑P1.

Lin X, Xia Y, Wang G, Yang Y, Xiong Z, Lv F, et al. Lactic

acid bacteria with antioxidant activities alleviating oxidized oil

induced hepatic injury in mice. Front Microbiol 2018;9:1‑10.

Ladda B, Tangteerawatana P, Padungchaichot P, Pradidarcheep W,

Kasorn A, Taweechotipatr M. Anti‑inflammatory effect of

probiotic Lactobacillus paracasei MSMC39‑1 on alcohol‑induced

hepatitis in rats. J Appl Pharm Sci 2021;11:46‑56.

Yan R, Wang K, Wang Q, Jiang H, Lu Y, Chen X, et al. Probiotic

lactobacillus casei Shirota prevents acute liver injury by

reshaping the gut microbiota to alleviate excessive inflammation

and metabolic disorders. Microb Biotechnol 2022;15:247‑61.

Jang HR, Park HJ, Kang D, Chung H, Nam MH, Lee Y, et al.

A protective mechanism of probiotic lactobacillus against hepatic

steatosis via reducing host intestinal fatty acid absorption. Exp

Mol Med 2019;51:1‑14. doi: 10.1038/s12276‑019‑0293‑4.

Ji K, Jang NY, Kim YT. Isolation of lactic acid bacteria showing

antioxidative and probiotic activities from kimchi and infant

feces. J Microbiol Biotechnol 2015;25:1568‑77.

Livinska O, Ivaschenko O, Garmasheva I, Kovalenko N. The

screening of lactic acid bacteria with antioxidant properties.

AIMS Microbiol 2016;2:447‑59.

Feng T, Wang J. Oxidative stress tolerance and antioxidant

capacity of lactic acid bacteria as probiotic: A systematic review.

Gut Microbes 2020;12. doi: 10.1080/19490976.2020.1801944.

Yang SJ, Kim KT, Kim TY, Paik HD. Probiotic properties and

antioxidant activities of pediococcus pentosaceus SC28 and

levilactobacillus brevis KU15151 in fermented black gamju.

Foods 2020;9. doi: 10.3390/foods9091154.

Dowarah R, Verma AK, Agarwal N, Singh P, Singh BR. Selection

and characterization of probiotic lactic acid bacteria and its

impact on growth, nutrient digestibility, health and antioxidant

status in weaned piglets. PLoS One 2018;13:e0192978. doi:

1371/journal.pone. 0192978.

Aguilar‑Toalá JE, Estrada‑Montoya MC, Liceaga AM,

Garcia HS, González‑Aguilar GA, Vallejo‑Cordoba B, et al. An

insight on antioxidant properties of the intracellular content of

Lactobacillus casei CRL‑431. Lwt 2019;102:58‑63.

Kleniewska P, Hoffmann A, Pniewska E, Pawliczak R. The

influence of probiotic lactobacillus casei in combination with

prebiotic inulin on the antioxidant capacity of human plasma.

Oxid Med Cell Longev 2016;2016. doi: 10.1155/2016/1340903.

Finamore A, Ambra R, Nobili F, Garaguso I, Raguzzini A,

Serafini M. Redox role of lactobacillus casei shirota against

the cellular damage induced by 2,2’‑azobis (2‑amidinopropane)

dihydrochloride‑induced oxidative and inflammatory stress in

enterocytes‑like epithelial cells. Front Immunol 2018;9:1‑12. doi:

3389/fimmu. 2018.01131.

Zhang Y, Hu P, Lou L, Zhan J, Fan M, Li D, et al. Antioxidant

activities of lactic acid bacteria for quality improvement of

fermented sausage. J Food Sci 2017;82:2960‑7.

Chooruk A, Piwat S, Teanpaisan R. Antioxidant activity

of various oral lactobacillus strains. J Appl Microbiol

;123:271‑9.

Unban K, Chaichana W, Baipong S, Abdullahi AD,

Kanpiengjai A, Shetty K, et al. Probiotic and antioxidant

properties of lactic acid bacteria isolated from indigenous

fermented tea leaves (Miang) of north thailand and promising

application in synbiotic formulation. Fermentation 2021;7:195.

Abubakr MAS, Hassan Z, Imdakim MMA, Sharifah NRSA.

Antioxidant activity of lactic acid bacteria (LAB) fermented skim

milk as determined by 1,1‑diphenyl‑2‑picrylhydrazyl (DPPH)

and ferrous chelating activity (FCA). African J Microbiol Res

;6.

Grompone G, Martorell P, Llopis S, González N, Genovés S,

Mulet AP, et al. Anti‑inflammatory lactobacillus rhamnosus

CNCM I‑3690 strain protects against oxidative stress and

increases lifespan in caenorhabditis elegans. PLoS One

;7:e52493. doi: 10.1371/journal.pone. 0052493.

Amaretti A, Di Nunzio M, Pompei A, Raimondi S, Rossi M,

Bordoni A. Antioxidant properties of potentially probiotic

bacteria: In vitro and in vivo activities. Appl Microbiol

Biotechnol 2013;97:809‑17.

Zamberi NR, Abu N, Mohamed NE, Nordin N, Keong YS,

Beh BK, et al. The antimetastatic and antiangiogenesis effects

of kefir water on murine breast cancer cells. Integr Cancer Ther

;15:NP53‑66.

Oh NS, Joung JY, Lee JY, Kim Y. Probiotic and

anti‑inflammatory potential of lactobacillus rhamnosus 4B15 and

lactobacillus gasseri 4M13 isolated from infant feces. PLoS One

;13:1‑15.

Ayyanna R, Ankaiah D, Arul V. Anti‑inflammatory and

antioxidant properties of probiotic bacterium lactobacillus

mucosae AN1 and lactobacillus fermentum SNR1 in wistar

albino rats. Front Microbiol 2018;9:1‑13. doi: 10.3389/fmicb.

03063

Jacouton E, Chain F, Sokol H, Langella P,

Bermúdez‑Humarán LG. Probiotic strain lactobacillus casei

BL23 prevents colitis‑associated colorectal cancer. Front

Immunol 2017;8:1‑10.

Kim KT, Kim JW, Kim SI, Kim S, Nguyen TH, Kang CH.

Antioxidant and anti‑inflammatory effect and probiotic

properties of lactic acid bacteria isolated from canine and

feline feces. Microorganisms 2021;9:1971. doi: 10.3390/

microorganisms9091971.

Guo Y, Pan D, Li H, Sun Y, Zeng X, Yan B. Antioxidant and

immunomodulatory activity of selenium exopolysaccharide

produced by lactococcus lactis subsp. lactis. Food Chem

;138:84‑9.

Rochat T, Bermúdez‑Humarán L, Gratadoux JJ, Fourage C,

Hoebler C, Corthier G, et al. Anti‑inflammatory effects of

lactobacillus casei BL23 producing or not a manganese‑dependant

catalase on DSS‑induced colitis in mice. Microb Cell Fact

;6:1‑10.

Brandi J, Cheri S, Manfredi M, Di Carlo C, Vita Vanella V,

Federici F, et al. Exploring the wound healing, anti‑inflammatory,

anti‑pathogenic and proteomic effects of lactic acid bacteria

on keratinocytes. Sci Rep 2020;10:1‑14. doi: 10.1038/

s41598‑020‑68483‑4.

Lee SY, Sekhon SS, Kim HC, Won K, Ahn JY, Lee K, et al.

Anti‑inflammatory effect of lactic acid bacteria isolated from

kimchi on acid‑induced acute colitis in model mice. Toxicol

Environ Health Sci 2017;9:279‑83.

Hassan HMM. Antioxidant and immunostimulating activities of

yeast (saccharomyces cerevisiae) autolysates. World Appl Sci J

;15:1110‑9.

Wu MJ, O’Doherty PJ, Fernandez HR, Lyons V, Rogers PJ,

Dawes IW, et al. An antioxidant screening assay based on

oxidant‑induced growth arrest in saccharomyces cerevisiae.

FEMS Yeast Res 2011;11:379‑87.

Gostimskaya I, Grant CM. Yeast mitochondrial glutathione is an

essential antioxidant with mitochondrial thioredoxin providing a

back‑up system. Free Radic Biol Med 2016;94:55‑65.

Shahat AS. Antioxidant and anticancer activities of yeast grown

on commercial media. Int J Biol Chem Sci 2018;11:2442.

Stephen DWS, Jamieson DJ. Glutathione is an important

antioxidant molecule in the yeast Saccharomyces cerevisiae.

FEMS Microbiol Lett 1996;141:207‑12.

Takata K, Tomita T, Okuno T, Kinoshita M, Koda T, Honorat JA,

et al. Dietary yeasts reduce inflammation in central nerve system

via microflora. Ann Clin Transl Neurol 2015;2:56‑66.

Foligné B, Dewulf J, Vandekerckove P, Pignède G, Pot B.

Probiotic yeasts: Anti‑inflammatory potential of various

non‑pathogenic strains in experimental colitis in mice. World J

Gastroenterol 2010;16:2134‑45.

Jawhara S, Habib K, Maggiotto F, Pignede G, Vandekerckove P,

Maes E, et al. Modulation of intestinal inflammation by yeasts

and cell wall extracts: Strain dependence and unexpected

anti‑inflammatory role of glucan fractions. PLoS One

;7:1‑15. doi: 10.1371/journal.pone. 0040648.

Bacha U, Nasir M, Iqbal S, Anjum AA. Nutraceutical, AntiInflammatory, and Immune Modulatory Effects of