The Effects of Calorie Restriction and Time‑Restricted Feeding on IGF1 Serum Level and Lipid Profile in Male Wister Rats with Previous Obesity
Abstract
Keywords
Full Text:
PDFReferences
Woods SC, Seeley RJ, Rushing PA, D’Alessio D, Tso P.
A controlled high‑fat diet induces an obese syndrome in rats.
J Nutr 2003;133:1081‑7.
Olsen MK, Choi MH, Kulseng B, Zhao CM, Chen D.
Time‑restricted feeding on weekdays restricts weight gain:
A study using rat models of high‑fat diet‑induced obesity.
Physiol Behav 2017;173:298‑304.
Blüher M. Obesity: Global epidemiology and pathogenesis. Nat
Rev Endocrinol 2019;15:288‑98.
Hernández‑García J, Navas‑Carrillo D, Orenes‑Piñero E.
Alterations of circadian rhythms and their impact on obesity,
metabolic syndrome and cardiovascular diseases. Crit Rev Food
Sci Nutr 2019:1‑10.
Hariri N, Thibault L. High‑fat diet‑induced obesity in animal
models. Nutr Res Rev 2010;23:270‑99.
Cummings NE, Radcliff A, Brodbeck A, Konon E, Wu J,
Sherman D, et al. Decreased consumption of specific
macronutrients promotes metabolic health and longevity. FASEB
J 2017;31 (1_supplement):645.24.
Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO.
Long-term effects of calorie or protein restriction on serum
IGF-1 and IGFBP-3 concentration in humans. Aging Cell
;7:681‑7.
de Cabo R, Fürer‑Galbán S, Anson RM, Gilman C, Gorospe M,
Lane MA. An in vitro model of caloric restriction. Exp Gerontol
;38:631‑9.
Fontana L, Villareal DT, Das SK, Smith SR, Meydani SN,
Pittas AG, et al. Effects of 2‑year calorie restriction on
circulating levels of IGF‑1, IGF-binding proteins and cortisol in
nonobese men and women: A randomized clinical trial. Aging
Cell 2016;15:22‑7.
Smyers ME. Enhanced weight and fat loss from long-term
intermittent fasting in obesity-prone, low-fitness rats. Physiology
& Behavior, 2021;230:113280.
Wu Z, Liu SQ, Huang D. Dietary restriction depends on nutrient
composition to extend chronological lifespan in budding yeast
Saccharomyces cerevisiae. PLoS 2013;8:e64448.
Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF‑1
axis in obesity: Pathophysiology and therapeutic considerations.
Nat Rev Endocrinol 2013;9:346‑56.
Lu Y, Bradley JS, McCoski SR, Gonzalez JM, Ealy AD,
Johnson SE. Reduced skeletal muscle fiber size following caloric
restriction is associated with calpain‑mediated proteolysis and
attenuation of IGF‑1 signaling. Am J Physiol Regul Integr Comp
Physiol 2017;312:R806‑15.
Abe T, Kazama R, Okauchi H, Oishi K. Food deprivation during
active phase induces skeletal muscle atrophy via IGF‑1 reduction
in mice. Arch Biochem Biophys 2019;677:108160.
Ajona D, Ortiz‑Espinosa S, Lozano T, Exposito F, Calvo A,
Valencia K, et al. Short‑term starvation reduces IGF‑1 levels to
sensitize lung tumors to PD‑1 immune checkpoint blockade. Nat Cancer 2020;1:75‑85.
Harvey AE, Lashinger LM, Otto G, Nunez NP, Hursting SD.
Decreased systemic IGF-1 in response to calorie restriction
modulates murine tumor cell growth, nuclear factor-κB
activation, and inflammation-related gene expression. Mol
Carcinog 2013;52:997‑1006.
Nam SY, Lee EJ, Kim KR, Cha BS, Song YD, Lim SK, et al.
Effect of obesity on total and free insulin‑like growth factor
(IGF)‑1, and their relationship to IGF‑binding protein (BP)‑1,
IGFBP‑2, IGFBP‑3, insulin, and growth hormone. Int J Obes
Relat Metab Disord 1997;21:355‑9.
Bailey‑Downs LC, Sosnowska D, Toth P, Mitschelen M,
Gautam T, Henthorn JC, et al. Growth hormone and IGF‑1
deficiency exacerbate high‑fat diet–induced endothelial
impairment in obese lewis dwarf rats: Implications for vascular
aging. J Gerontol A Biol Sci Med Sci 2012;67:553‑64.
O’Flanagan CH, Smith LA, McDonell SB, Hursting SD. When
less may be more: Calorie restriction and response to cancer
therapy. BMC Med 2017;15:106.
Yu D, Fontana L, Lamming DW. Aging: Mechanisms, signaling
and dietary intervention, in principles of nutrigenetics and
nutrigenomics. Princ Nutrigenet Nutrigenomics 2020:395‑401.
doi: 10.1016/B978‑0‑12‑804572‑5.00054‑9.
Espelund U, Bruun JM, Richelsen B, Flyvbjerg A, Frystyk J.
Pro‑and mature IGF‑II during diet‑induced weight loss in obese
subjects. Eur J Endocrinol 2005;153:861‑9.
Fiorino P, Américo AL, Muller CR, Evangelista FS, Santos F,
Leite AP, et al. Exposure to high‑fat diet since post‑weaning
induces cardiometabolic damage in adult rats. Life Sci
;160:12‑7.
Cardinal KM, de Moraes ML, Borille R, Lovato GD, Ceron MS,
de Marques Vilella L, et al. Effects of dietary conjugated linoleic
acid on broiler performance and carcass characteristics. J Agric
Sci 2017;9:208.
Raff MJO, Tholstrup T, Basu S, Nonboe P, Sørensen MT,
Straarup EM. A diet rich in conjugated linoleic acid and butter
increases lipid peroxidation but does not affect atherosclerotic,
inflammatory, or diabetic risk markers in healthy young
men‑DTU Orbit (19/12/2018) 2018;19:12.
Ramadori G, Lee CE, Bookout AL, Lee S, Williams KW,
Anderson J, et al. Brain SIRT1: Anatomical distribution and
regulation by energy availability. J Neurosci 2008;28:9989‑96.
Moynihan KA, Grimm AA, Plueger MM, Bernal‑Mizrachi E,
Ford E, Cras‑Méneur C, et al. Increased dosage of mammalian
Sir2 in pancreatic β cells enhances glucose‑stimulated insulin
secretion in mice. Cell Metab 2005;2:105‑17.
Dastbarhagh H, Kargarfard M, Abedi H, Bambaeichi E,
Nazarali P. Effects of food restriction and/or aerobic exercise
on the GLUT4 in type 2 diabetic male rats. Int J Prev Med
;10:139.
Park S, Yoo KM, Hyun JS, Kang S. Intermittent fasting reduces
body fat but exacerbates hepatic insulin resistance in young
rats regardless of high protein and fat diets. J Nutr Biochem
;40:14‑22.
Bartlett J, Predazzi IM, Williams SM, Bush WS, Kim Y,
Havas S, et al. Is isolated low HDL‑C a CVD risk factor? New
insights from the framingham offspring study. Circ Cardiovasc
Qual Outcomes 2016;9:206‑12.