Immune Responses in SARS‑CoV‑2, SARS‑CoV, and MERS‑CoV Infections: A Comparative Review

Soussan Irani

Abstract


Coronavirus, discovered in the 1960s, is able to infect human hosts and causes mild to serious respiratory problems. In the last two decades, the severe acute respiratory syndrome coronavirus (SARS‑CoV), Middle East respiratory syndrome coronavirus (MERS‑CoV) and severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) have been recognized. It has long been demonstrated that MERS‑CoV binds to dipeptidyl peptidase 4 and SARS‑CoV binds to angiotensin‑converting enzyme 2. A “cytokine storm” is the main pathophysiology of aforementioned viruses. Infiltration of neutrophils at the site of the infection is a risk factor for the development of acute respiratory distress syndrome and death. The new coronavirus, SARS‑CoV‑2, has infected more people than SARS‑Cov and MERS‑CoV as it can easily be transmitted from person to person. Epidemiological studies indicate that majority of individuals are asymptomatic; therefore, an effective and an efficient tool is required for rapid testing. Identification of various cytokine and inflammatory factor expression levels can help in outcome prediction. In this study we reviewed immune responses in SARS-CoV, Mers-CoV, and SARS-COV-2 infections and the role of inflammatory cells.

Keywords


Adaptive immunit; coronavirus; cytokine storm; SARS‑CoV‑2

Full Text:

PDF

References


Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, et al. The first

Days of novel coronavirus (SARS‑CoV‑2) outbreak: Recent

advances, prevention, and treatment. Int J Environ Res Public

Health 2020;17:2323.

Lipworth B, Chan R, Lipworth S, RuiWen Kuo C. Weathering

the Cytokine storm in susceptible patients with severe

SARS‑CoV‑2 infection. J Allergy Clin Immunol Pract

;8:1798‑801.

Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S,

et al. Lianhuaqingwen exerts anti‑viral and anti‑inflammatory

activity against novel coronavirus (SARS‑CoV‑2). Pharmacol

Res 2020;156:104761. doi: 10.1016/j.phrs. 2020.104761.

Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis

of SARS‑CoV‑2 infection–a review of immune changes

in patients with viral pneumonia. Emerg Microbes Infect

;9:727‑32.

Araf Y, Faruqui NA, Anwar S, Hosen MJ. SARS‑CoV‑2: A new

dimension to our understanding of coronaviruses. Int Microbiol

;24:19‑24.

Wang P, Luo R, Zhang M, Wang Y, Song T, Tao T, et al.

A cross‑talk between epithelium and endothelium mediates

human alveolar–capillary injury during SARS‑CoV‑2 infection.

Cell Death Dis 2020;11:1042.

Rossi GA, Sacco O, Mancino E, Cristiani L, Midulla F.

Differences and similarities between SARS‑CoV and

SARS‑CoV‑2: Spike receptor‑binding domain recognition and

host cell infection with support of cellular serine proteases.

Infection 2020;48:665‑9.

Frieman M, Baric R. Mechanisms of severe acute respiratory

syndrome pathogenesis and innate immunomodulation. Microbiol

Mol Biol Rev 2008;72:672‑85.

Roberts A, Lamirande EW, Vogel L, Jackson JP, Paddock CD,

Guarner J, et al. Animal models and vaccines for SARS‑CoV

infection. Virus Res 2008;133:20‑32.

Abdolahi N, Kaheh E, Golsha R, Khodabakhshi B, Norouzi A,

Khandashpoor M, et al. Letter to the editor: Efficacy of different

methods of combination regimen administrations including

dexamethasone, intravenous immunoglobulin, and interferon‑beta

to treat critically ill COVID‑19 patients: A structured summary

of a study protocol for a randomized controlled trial. Trials

;21:549.

Birgand G, Peiffer‑Smadja N, Fournier S, Kerneis S,

Lescure F‑X, Lucet J‑C. Assessment of air contamination

by SARS‑CoV‑2 in hospital settings. JAMA Netw Open

;3:e2033232‑e.

Vinayachandran D, Balasubramanian S. Salivary diagnostics

in COVID‑19: Future research implications. J Dent Sci

;15:364‑6.

Bernabei F, Versura P, Rossini G, Re MC. There is a role

in detection of SARS‑CoV‑2 in conjunctiva and tears:

A comprehensive review. New Microbiol 2020;43:149‑55.

Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From

SARS and MERS to COVID‑19: A brief summary and

comparison of severe acute respiratory infections caused by

three highly pathogenic human coronaviruses. Respir Res

;21:1‑14.

Hanege FM, Kocoglu E, Kalcioglu MT, Celik S, Cag Y, Esen F,

et al. SARS‑CoV‑2 presence in the saliva, tears, and cerumen of

COVID‑19 patients. Laryngoscope 2021;131:E1677‑82.

Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of

angiotensin‑converting enzyme 2 (ACE2) in COVID‑19. Crit

Care 2020;24:422.

Choudhry H, Bakhrebah MA, Abdulaal WH, Zamzami MA,

Baothman OA, Hassan MA, et al. Middle East respiratory

syndrome: Pathogenesis and therapeutic developments. Future

Virol 2019;14:237‑46.

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of

COVID‑19: Immunity, inflammation and intervention. Nat Rev

Immunol 2020;20:363‑74.

Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF,

Bursi R, et al. The anti‑viral facet of anti‑rheumatic drugs:

Lessons from COVID‑19. J Autoimmun 2020;111:102468.

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the

`Cytokine Storm’ in COVID‑19. J Infect 2020;80:607‑13.

Wang C, Wu H, Ding X, Ji H, Jiao P, Song H, et al. Does

infection of 2019 novel coronavirus cause acute and/or chronic

sialadenitis? Med Hypotheses 2020;140:109789.

Irani S, Jafari B. Expression of vimentin and CD44 in

mucoepidermoid carcinoma: A role in tumor growth. Indian J

Dent Res 2018;29:333‑40.

Irani S, Dehghan A. Expression of vascular endothelial‑cadherin

in mucoepidermoid carcinoma: Role in cancer development.

J Int Soc Prev Community Dent 2017;7:301‑7.

Irani S, Dehghan A. The expression and functional significance

of vascular endothelial‑cadherin, CD44, and vimentin in oral

squamous cell carcinoma. J Int Soc Prev Community Dent

;8:110‑7.

Ramos I, Stamatakis K, Oeste CL, Pérez‑Sala D. Vimentin as

a multifaceted player and potential therapeutic target in viral

infections. Int J Mol Sci 2020;21:4675.

Suprewicz Ł, Swoger M, Gupta S, Piktel E, Byfield FJ,

Iwamoto DV, et al. Vimentin binds to SARS‑CoV‑2 spike

protein and antibodies targeting extracellular vimentin block

in vitro uptake of SARS‑CoV‑2 virus‑like particles. bioRxiv

Pre‑print. doi: 10.1101/2021.01.08.425793.

Felsenstein S, Herbert JA, McNamara PS, Hedrich CM.

COVID‑19: Immunology and treatment options. Clin

Immunol (Orlando, Fla) 2020;215:108448. doi: 10.1016/j.clim.

108448.

Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, et al.

T cell responses to whole SARS coronavirus in humans.

J Immunol (Baltimore, Md: 1950) 2008;181:5490‑500.

Hoffmann M, Kleine‑Weber H, Schroeder S, Krüger N,

Herrler T, Erichsen S, et al. SARS‑CoV‑2 cell entry depends

on ACE2 and TMPRSS2 and is blocked by a clinically proven

protease inhibitor. Cell 2020;181:271‑80.e8.

Magrone T, Magrone M, Jirillo E. Focus on receptors for

coronaviruses with special reference to angiotensin‑converting

enzyme 2 as a potential drug target ‑ A perspective. Endocr

Metab Immune Disord Drug Targets 2020;20:807‑11.

Mubarak A, Alturaiki W, Hemida MG. Middle east respiratory

syndrome coronavirus (MERS‑CoV): Infection, immunological

response, and vaccine development. J Immunol Res

;2019:6491738. doi: 10.1155/2019/6491738.

Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q,

Meredith HR, et al. The incubation period of coronavirus

disease 2019 (COVID‑19) from publicly reported confirmed

cases: Estimation and application. Ann Intern Med

;172:577‑82.

Jiang X, Rayner S, Luo MH. Does SARS‑CoV‑2 has a

longer incubation period than SARS and MERS? J Med Virol

;92:476‑8.

Ahmadpoor P, Rostaing L. Why the immune system fails to

mount an adaptive immune response to a Covid‑19 infection.

Transpl Int 2020;33:824‑5.

Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra‑respiratory

manifestations of COVID‑19. Int J Antimicrob Agents

;56:106024. doi: 10.1016/j.ijantimicag. 2020.106024.

Chu H, Chan JFW, Yuen TTT, Shuai H, Yuan S, Wang Y, et al.

Comparative tropism, replication kinetics, and cell damage

profiling of SARS‑CoV‑2 and SARS‑CoV with implications

for clinical manifestations, transmissibility, and laboratory

studies of COVID‑19: An observational study. Lancet Microbe

;1:e14‑23.

Ryan PM, Caplice NM. Is adipose tissue a reservoir for viral

spread, immune activation and cytokine amplification in

COVID‑19. Obesity 2020;28:1191‑4.

Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA,

et al. Clinical aspects and outcomes of 70 patients with

Middle East respiratory syndrome coronavirus infection:

A single‑center experience in Saudi Arabia. Int J Infect Dis

;29:301‑6.

Tynell J, Westenius V, Rönkkö E, Munster VJ, Melén K,

Österlund P, et al. Middle East respiratory syndrome coronavirus

shows poor replication but significant induction of antiviral

responses in human monocyte‑derived macrophages and

dendritic cells. J Gen Virol 2016;97:344‑55.

Liang Y, Wang M‑L, Chien C‑S, Yarmishyn AA, Yang YP,

Lai W‑Y, et al. Highlight of immune pathogenic response

and hematopathologic effect in SARS‑CoV, MERS‑CoV, and

SARS‑Cov‑2 infection. Front Immunol 2020;11. doi: 10.3389/

fimmu. 2020.01022.

Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, et al.

Active replication of Middle East respiratory syndrome

coronavirus and aberrant induction of inflammatory cytokines

and chemokines in human macrophages: Implications for

pathogenesis. J Infect Dise 2014;209:1331‑42.

Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM,

Suliman BA. MERS‑CoV infection in humans is associated with

a pro‑inflammatory Th1 and Th17 cytokine profile. Cytokine

;104:8‑13.

Shin HS, Kim Y, Kim G, Lee JY, Jeong I, Joh JS, et al. Immune

responses to Middle East respiratory syndrome coronavirus

during the acute and convalescent phases of human infection.

Clin Infect Dis 2019;68:984‑92.

Alosaimi B, Hamed ME, Naeem A, Alsharef AA, AlQahtani SY,

AlDosari KM, et al. MERS‑CoV infection is associated with

downregulation of genes encoding Th1 and Th2 cytokines/

chemokines and elevated inflammatory innate immune response

in the lower respiratory tract. Cytokine 2020;126:154895. doi:

1016/j.cyto. 2019.154895.

Costela‑Ruiz VJ, Illescas‑Montes R, Puerta‑Puerta JM, Ruiz C,

Melguizo‑Rodríguez L. SARS‑CoV‑2 infection: The role of

cytokines in COVID‑19 disease. Cytokine Growth Factor Rev

;54:62‑75.

Kalfaoglu B, Almeida‑Santos J, Tye CA, Satou Y, Ono M. T‑cell

dysregulation in COVID‑19. Biochem Biophys Res Commun

;538:204‑10.

Fielding CA, McLoughlin RM, McLeod L, Colmont CS,

Najdovska M, Grail D, et al. IL‑6 regulates neutrophil trafficking

during acute inflammation via STAT3. J Immunol (Baltimore,

Md: 1950) 2008;181:2189‑95.

McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role

of cytokines including interleukin‑6 in COVID‑19 induced

pneumonia and macrophage activation syndrome‑like disease.

Autoimmun Rev 2020;19:102537. doi: 10.1016/j.autrev.

102537.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical

features of patients infected with 2019 novel coronavirus in

Wuhan, China. Lancet 2020;395:497‑506.

Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release

syndrome in severe COVID‑19: Interleukin‑6 receptor

antagonist tocilizumab may be the key to reduce mortality.

Int J Antimicrobial Agents 2020;55:105954. doi: 10.1016/j.

ijantimicag. 2020.105954.

Yang Y, Shen C, Li J, Yuan J, Wei J, Huang F, et al. Plasma

IP‑10 and MCP‑3 levels are highly associated with disease

severity and predict the progression of COVID‑19. J Allergy

Clin Immunol 2020;146:119‑27.

Aboagye JO, Yew CW, Ng OW, Monteil VM, Mirazimi A,

Tan YJ. Overexpression of the nucleocapsid protein of Middle

East respiratory syndrome coronavirus up‑regulates CXCL10.

;38. doi: 10.1042/BSR20181059.

Kim ES, Choe PG. Clinical progression and cytokine profiles

of Middle East respiratory syndrome coronavirus infection.

J Korean Med Sci 2016;31:1717‑25.

Majumdar S, Murphy PM. Chemokine regulation during

epidemic coronavirus infection. Front Pharmacol 2021;11. doi:

3389/fphar. 2020.600369.

He L, Ding Y, Zhang Q, Che X, He Y, Shen H, et al.

Expression of elevated levels of pro‑inflammatory cytokines in

SARS‑CoV‑infected ACE2+cells in SARS patients: Relation

to the acute lung injury and pathogenesis of SARS. J Pathol

;210:288‑97.

Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A,

et al. Comparative and kinetic analysis of viral shedding and

immunological responses in MERS patients representing a broad

spectrum of disease severity. Sci Rep 2016;6:25359.

Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al.

Plasma inflammatory cytokines and chemokines in severe acute

respiratory syndrome. Clin Exp Immunol 2004;136:95‑103.

Al‑Abdallat MM, Payne DC, Alqasrawi S, Rha B,

Tohme RA, Abedi GR, et al. Hospital‑associated outbreak of

Middle East respiratory syndrome coronavirus: A serologic,

epidemiologic, and clinical description. Clin Infect Dis

;59:1225‑33.

Li G, Chen X, Xu A. Profile of specific antibodies to the

SARS‑associated coronavirus. N Engl J Med 2003;349:508‑9.

Hou H, Wang T, Zhang B, Luo Y, Mao L, Wang F, et al.

Detection of IgM and IgG antibodies in patients with coronavirus

disease 2019. Clin Transl Immunol 2020;9:e01136.

Jayamohan H, Lambert CJ, Sant HJ, Jafek A, Patel D, Feng H,

et al. SARS‑CoV‑2 pandemic: A review of molecular diagnostic

tools including sample collection and commercial response

with associated advantages and limitations. Anal Bioanal Chem

;413:49‑71.

Borges L, Pithon‑Curi TC, Curi R, Hatanaka E. COVID‑19

and neutrophils: The relationship between hyperinflammation

and neutrophil extracellular traps. Mediators Inflamm

;2020:8829674. doi: 10.1155/2020/8829674.

Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I,

et al. Induction of pro‑inflammatory cytokines (IL‑1 and

IL‑6) and lung inflammation by Coronavirus‑19 (COVI‑19

or SARS‑CoV‑2): Anti‑inflammatory strategies. J Biol Regul

Homeost Agents 2020;34:327‑31.

Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike

protein‑induced innate immune response occurs via activation of

the NF‑κB pathway in human monocyte macrophages in vitro.

Virus Res 2009;142:19‑27.

Aboudounya MM, Heads RJ. COVID‑19 and toll‑like receptor

(TLR4): SARS‑CoV‑2 may bind and activate TLR4 to

increase ACE2 expression, facilitating entry and causing

hyperinflammation. Mediators Inflamm 2021;2021:8874339. doi:

1155/2021/8874339.

Veras FP, Pontelli MC, Silva CM, Toller‑Kawahisa JE,

de Lima M, Nascimento DC, et al. SARS‑CoV‑2‑triggered

neutrophil extracellular traps mediate COVID‑19 pathology.

J Exp Med 2020;217:e20201129. doi: 10.1084/jem. 20201129.

Irani S, Barati I, Badiei M. Periodontitis and oral cancer‑current

concepts of the etiopathogenesis. Oncol Rev 2020;14:465.

Rizzo P, Dalla Sega FV, Fortini F, Marracino L, Rapezzi C,

Ferrari R. COVID‑19 in the heart and the lungs: Could

we “Notch” the inflammatory storm? Basic Res Cardiol

;115:31.

Schett G, Sticherling M, Neurath MF. COVID‑19: Risk for

cytokine targeting in chronic inflammatory diseases? Nat Rev

Immunol 2020;20:271‑2.

Heijink IH, Vellenga E, Borger P, Postma DS, de Monchy JG,

Kauffman HF. Interleukin‑6 promotes the production of

interleukin‑4 and interleukin‑5 by interleukin‑2‑dependent

and ‑independent mechanisms in freshly isolated human T cells.

Immunology 2002;107:316‑24.

Baseler LJ, Falzarano D, Scott DP, Rosenke R, Thomas T,

Munster VJ, et al. An acute immune response to middle east

respiratory syndrome coronavirus replication contributes to viral

pathogenicity. Am J Pathol 2016;186:630‑8.

Zhang YY, Li BR, Ning BT. The comparative immunological

characteristics of SARS‑CoV, MERS‑CoV, and SARS‑CoV‑2

coronavirus infections. Front Immunol 2020;11:2033.

İnandıklıoğlu N, Akkoc T. Immune responses to SARS‑CoV,

MERS‑CoV and SARS‑CoV‑2. In: Turksen K, editor. Cell

Biology and Translational Medicine, Volume 9: Stem Cell‑Based

Therapeutic Approaches in Disease. Cham: Springer International

Publishing; 2020. p. 5‑12.

Booz GW, Altara R, Eid AH, Wehbe Z, Fares S, Zaraket H,

et al. Macrophage responses associated with COVID‑19:

A pharmacological perspective. Eur J Pharmacol

;887:173547. doi: 10.1016/j.ejphar. 2020.173547.

Haick AK, Rzepka JP, Brandon E, Balemba OB, Miura TA.

Neutrophils are needed for an effective immune response against

pulmonary rat coronavirus infection, but also contribute to

pathology. J Gen Virol 2014;95:578‑90.

Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W,

et al. Chemokine up‑regulation in SARS‑coronavirus–

infected, monocyte‑derived human dendritic cells. Blood

;106:2366‑74.

Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M.

Contribution of monocytes and macrophages to the local tissue

inflammation and cytokine storm in COVID‑19: Lessons from

SARS and MERS, and potential therapeutic interventions. Life

Sci 2020;257:118102. doi: 10.1016/j.lfs. 2020.118102.

Ahmed F, Jo D‑H, Lee S‑H. Can natural killer cells be a

principal player in Anti‑SARS‑CoV‑2 immunity? Front Immunol

;11. doi: 10.3389/fimmu. 2020.586765.

Lagunas‑Rangel FA. Neutrophil‑to‑lymphocyte ratio and

lymphocyte‑to‑C‑reactive protein ratio in patients with severe

coronavirus disease 2019 (COVID‑19): A meta‑analysis. J Med

Virol 2020;92:1733‑4.

Sun DW, Zhang D, Tian RH, Li Y, Wang YS, Cao J, et al.

The underlying changes and predicting role of peripheral blood

inflammatory cells in severe COVID‑19 patients: A sentinel?

Clin Chim Acta 2020;508:122‑9.

Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction

and functional exhaustion of T cells in patients with coronavirus

disease 2019 (COVID‑19). Front Immunol 2020;11. doi:

3389/fimmu. 2020.00827.

Ganji A, Farahani I, Khansarinejad B, Ghazavi A,

Mosayebi G. Increased expression of CD8 marker on T‑cells in

COVID‑19 patients. Blood Cells Mol Dis 2020;83:102437. doi:

1016/j.bcmd. 2020.102437.

He Z, Zhao C, Dong Q, Zhuang H, Song S, Peng G, et al.

Effects of severe acute respiratory syndrome (SARS) coronavirus

infection on peripheral blood lymphocytes and their subsets. Int

J Infect Dis 2005;9:323‑30.

Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4⁺T

cells in immunity to viruses. Nat Rev Immunol 2012;12:136‑48.

Siracusano G, Pastori C, Lopalco L. Humoral immune responses

in COVID‑19 patients: A window on the state of the art. Front

Immunol 2020;11. doi: 10.3389/fimmu. 2020.01049.

Chen Z, John Wherry E. T cell responses in patients with

COVID‑19. Nat Rev Immunol. 2020;20:529‑36.

Zhang C, Wang XM, Li SR, Twelkmeyer T, Wang WH,

Zhang SY, et al. NKG2A is a NK cell exhaustion checkpoint for

HCV persistence. Nat Commun 2019;10:1507.

Irani S. Emerging insights into the biology of metastasis:

A review article. Iran J Basic Med Sci 2019;22:833‑47.

Abassi Z, Knaney Y, Karram T, Heyman SN. The lung

macrophage in SARS‑CoV‑2 infection: A friend or a foe? Front

Immunol 2020;11:1312. doi: 10.3389/fimmu. 2020.01312.

Masselli E, Vaccarezza M, Carubbi C, Pozzi G, Presta V,

Mirandola P, et al. NK cells: A double edge sword against

SARS‑CoV‑2. Adv Biol Regul 2020;77:100737. doi: 10.1016/j.

jbior. 2020.100737.

Hemmat N, Derakhshani A, Bannazadeh Baghi H, Silvestris N,

Baradaran B, De Summa S. Neutrophils, crucial, or harmful

immune cells involved in coronavirus infection: A bioinformatics

study. Front Genet 2020;11. doi: 10.3389/fgene. 2020.00641.

Reusch N, De Domenico E, Bonaguro L, Schulte‑Schrepping J,

Baßler K, Schultze JL, et al. Neutrophils in COVID‑19. Front

Immunol 2021;12. doi: 10.3389/fimmu. 2021.652470.

Borges RC, Hohmann MS, Borghi SM. Dendritic cells in

COVID‑19 immunopathogenesis: Insights for a possible role in

determining disease outcome. Int Rev Immunol 2021;40:108‑125.

Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M,

et al. Distinct immune response in two MERS‑CoV‑infected

patients: Can we go from bench to bedside? PloS One

;9:e88716.

Josset L, Menachery VD, Gralinski LE, Agnihothram S, Sova P,

Carter VS, et al. Cell host response to infection with novel human

coronavirus EMC predicts potential antivirals and important

differences with SARS coronavirus. mBio 2013;4:e00165‑13.

Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J,

et al. Innate immune response of human alveolar type II cells

infected with severe acute respiratory syndrome‑coronavirus. Am

J Respir Cell Mol Biol 2013;48:742‑8.

Cheung CY, Poon LL, Ng IH, Luk W, Sia SF, Wu MH, et al.

Cytokine responses in severe acute respiratory syndrome

coronavirus‑infected macrophages in vitro: Possible relevance to

pathogenesis. J Virol 2005;79:7819‑26.

Chu H, Zhou J, Wong BH, Li C, Cheng ZS, Lin X, et al.

Productive replication of Middle East respiratory syndrome

coronavirus in monocyte‑derived dendritic cells modulates innate

immune response. Virology 2014;454‑455:197‑205.

Jiang L, Wang N, Zuo T, Shi X, Poon K‑MV, Wu Y, et al. Potent

neutralization of MERS‑CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med

;6:234ra59‑ra59.

Liu I‑J, Hsueh P‑R, Lin C‑T, Chiu C‑Y, Kao C‑L, Liao M‑Y,

et al. Disease‑specific B cell epitopes for serum antibodies from

patients with severe acute respiratory syndrome (SARS) and

serologic detection of SARS antibodies by epitope‑based peptide

antigens. J Infect Dis 2004;190:797‑809.

Nielsen SC, Yang F, Hoh RA, Jackson KJ, Roeltgen K, Lee JY,

et al. B cell clonal expansion and convergent antibody responses

to SARS‑CoV‑2. Res Sq [Preprint] 2020. doi: 10.21203/rs.

rs‑27220/v1.

Meng L, Hua F. Coronavirus disease 2019 (COVID‑19):

Emerging and future challenges for dental and oral medicine.

J Dent Res 2020;99:481‑7.

Peng L, Liu J, Xu W, Luo Q, Chen D, Lei Z, et al. SARS‑CoV‑2

can be detected in urine, blood, anal swabs, and oropharyngeal

swabs specimens. J Med Virol 2020;92:1676‑80.

To KK‑W, Tsang OT‑Y, Yip CC‑Y, Chan K‑H, Wu T‑C,

Chan JM‑C, et al. Consistent detection of 2019 novel coronavirus

in saliva. Clin Infect Dis 2020;71:841‑3.

Chen L, Zhao J, Peng J, Li X, Deng X, Geng Z, et al. Detection

of 2019‑nCoV in saliva and characterization of oral symptoms

in COVID‑19 patients. 2020. SSRN 3556665. Available from:

https://ssrn.com/abstract=3557140.

Karimi S, Arabi A, Shahraki T, Safi S. Detection of severe acute

respiratory syndrome Coronavirus‑2 in the tears of patients with

Coronavirus disease 2019. Eye 2020;34:1220‑3.

Khatami F, Saatchi M, Zadeh SST, Aghamir ZS, Shabestari AN,

Reis LO, et al. A meta‑analysis of accuracy and sensitivity

of chest CT and RT‑PCR in COVID‑19 diagnosis. Sci Rep

;10:22402.

Liu J, Babka AM, Kearney BJ, Radoshitzky SR, Kuhn JH,

Zeng X. Molecular detection of SARS‑CoV‑2 in formalin‑fixed,

paraffin‑embedded specimens. JCI Insight 2020;5:e139042.

Yuan X, Yang C, He Q, Chen J, Yu D, Li J, et al. Current and

perspective diagnostic techniques for COVID‑19. ACS Infect Dis

;6:1998‑2016.

Chang M‑S, Lu Y‑T, Ho S‑T, Wu C‑C, Wei T‑Y, Chen C‑J,

et al. Antibody detection of SARS‑CoV spike and nucleocapsid

protein. Biochem Biophys Res Commun 2004;314:931‑6.

Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R.

Systematic review with meta‑analysis of the accuracy of diagnostic

tests for COVID‑19. Am J Infect Control 2021;49:21‑9.

Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A,

Osborne M, Li VYC, et al. Diagnosing COVID‑19: The disease

and tools for detection. ACS Nano 2020;14:3822‑35.

Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection

of SARS‑CoV‑2 in different types of clinical specimens. JAMA

;323:1843‑4.

Zitek T. The appropriate use of testing for COVID‑19. West J

Emerg Med 2020;21:470‑2.

Chan KH, Poon LL, Cheng VC, Guan Y, Hung IF, Kong J,

et al. Detection of SARS coronavirus in patients with suspected

SARS. Emerg Infect Dis 2004;10:294‑9.

Farooq HZ, Davies E, Ahmad S, Machin N, Hesketh L,

Guiver M, et al. Middle East respiratory syndrome

coronavirus (MERS‑CoV)‑Surveillance and testing in North

England from 2012 to 2019. Int J Infect Dis 2020;93:237‑44.

Huang P, Wang H, Cao Z, Jin H, Chi H, Zhao J, et al. A rapid

and specific assay for the detection of MERS‑CoV. Front

Microbiol 2018;9:1101.

Modjarrad K. Treatment strategies for Middle East respiratory

syndrome coronavirus. J Virus Erad 2016;2:1‑4.

Conti P, Ronconi G, Caraffa A, Gallenga C, Ross R, Frydas I,

et al. Induction of pro‑inflammatory cytokines (IL‑1 and

IL‑6) and lung inflammation by Coronavirus‑19 (COVI‑19

or SARS‑CoV‑2): Anti‑inflammatory strategies. J Biol Regul

Homeost Agents 2020;34:327‑331.

Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ,

et al. Comparative therapeutic efficacy of remdesivir and

combination lopinavir, ritonavir, and interferon beta against

MERS‑CoV. Nat Commun 2020;11:222.

de Candia P, Prattichizzo F, Garavelli S, Matarese G.

T cells: Warriors of SARS‑CoV‑2 infection. Trends Immunol

;42:18‑30.

Kritas SK, Ronconi G, Caraffa A, Gallenga CE, Ross R, Conti P.

Mast cells contribute to coronavirus‑induced inflammation: New

anti‑inflammatory strategy. J Biol Regul Homeost Agents 2020;34:9‑14.

Dziedzic A, Wojtyczka R. The impact of coronavirus

infectious disease 19 (COVID‑19) on oral health. Oral Dis

;27:703‑6.

Runfeng L, Yunlong H, Jicheng H, Weiqi P,

Qinhai M, Yongxia S, et al. Lianhuaqingwen exerts

anti‑viral and anti‑inflammatory activity against novel

coronavirus (SARS‑CoV‑2). Pharmacol Res 2020;156:104761.

doi: 10.1016/j.phrs. 2020.104761.

Selvaraj V, Dapaah‑Afriyie K, Finn A, Flanigan TP. Short‑term

dexamethasone in Sars‑CoV‑2 patients. R I Med J (2013)

;103:39‑43.

Dai L, Gao GF. Viral targets for vaccines against COVID‑19.

Nat Rev Immunol 2021;21:73‑82.

Marian AJ. Current state of vaccine development and targeted

therapies for COVID‑19: Impact of basic science discoveries.

Cardiovasc Pathol 2021;50:107278. doi: 10.1016/j.carpath.

107278.

Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A,

Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA

Covid‑19 vaccine. N Engl J Med 2020;383:2603‑15.