Immune Responses in SARS‑CoV‑2, SARS‑CoV, and MERS‑CoV Infections: A Comparative Review
Abstract
Keywords
Full Text:
PDFReferences
Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, et al. The first
Days of novel coronavirus (SARS‑CoV‑2) outbreak: Recent
advances, prevention, and treatment. Int J Environ Res Public
Health 2020;17:2323.
Lipworth B, Chan R, Lipworth S, RuiWen Kuo C. Weathering
the Cytokine storm in susceptible patients with severe
SARS‑CoV‑2 infection. J Allergy Clin Immunol Pract
;8:1798‑801.
Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S,
et al. Lianhuaqingwen exerts anti‑viral and anti‑inflammatory
activity against novel coronavirus (SARS‑CoV‑2). Pharmacol
Res 2020;156:104761. doi: 10.1016/j.phrs. 2020.104761.
Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis
of SARS‑CoV‑2 infection–a review of immune changes
in patients with viral pneumonia. Emerg Microbes Infect
;9:727‑32.
Araf Y, Faruqui NA, Anwar S, Hosen MJ. SARS‑CoV‑2: A new
dimension to our understanding of coronaviruses. Int Microbiol
;24:19‑24.
Wang P, Luo R, Zhang M, Wang Y, Song T, Tao T, et al.
A cross‑talk between epithelium and endothelium mediates
human alveolar–capillary injury during SARS‑CoV‑2 infection.
Cell Death Dis 2020;11:1042.
Rossi GA, Sacco O, Mancino E, Cristiani L, Midulla F.
Differences and similarities between SARS‑CoV and
SARS‑CoV‑2: Spike receptor‑binding domain recognition and
host cell infection with support of cellular serine proteases.
Infection 2020;48:665‑9.
Frieman M, Baric R. Mechanisms of severe acute respiratory
syndrome pathogenesis and innate immunomodulation. Microbiol
Mol Biol Rev 2008;72:672‑85.
Roberts A, Lamirande EW, Vogel L, Jackson JP, Paddock CD,
Guarner J, et al. Animal models and vaccines for SARS‑CoV
infection. Virus Res 2008;133:20‑32.
Abdolahi N, Kaheh E, Golsha R, Khodabakhshi B, Norouzi A,
Khandashpoor M, et al. Letter to the editor: Efficacy of different
methods of combination regimen administrations including
dexamethasone, intravenous immunoglobulin, and interferon‑beta
to treat critically ill COVID‑19 patients: A structured summary
of a study protocol for a randomized controlled trial. Trials
;21:549.
Birgand G, Peiffer‑Smadja N, Fournier S, Kerneis S,
Lescure F‑X, Lucet J‑C. Assessment of air contamination
by SARS‑CoV‑2 in hospital settings. JAMA Netw Open
;3:e2033232‑e.
Vinayachandran D, Balasubramanian S. Salivary diagnostics
in COVID‑19: Future research implications. J Dent Sci
;15:364‑6.
Bernabei F, Versura P, Rossini G, Re MC. There is a role
in detection of SARS‑CoV‑2 in conjunctiva and tears:
A comprehensive review. New Microbiol 2020;43:149‑55.
Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From
SARS and MERS to COVID‑19: A brief summary and
comparison of severe acute respiratory infections caused by
three highly pathogenic human coronaviruses. Respir Res
;21:1‑14.
Hanege FM, Kocoglu E, Kalcioglu MT, Celik S, Cag Y, Esen F,
et al. SARS‑CoV‑2 presence in the saliva, tears, and cerumen of
COVID‑19 patients. Laryngoscope 2021;131:E1677‑82.
Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of
angiotensin‑converting enzyme 2 (ACE2) in COVID‑19. Crit
Care 2020;24:422.
Choudhry H, Bakhrebah MA, Abdulaal WH, Zamzami MA,
Baothman OA, Hassan MA, et al. Middle East respiratory
syndrome: Pathogenesis and therapeutic developments. Future
Virol 2019;14:237‑46.
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of
COVID‑19: Immunity, inflammation and intervention. Nat Rev
Immunol 2020;20:363‑74.
Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF,
Bursi R, et al. The anti‑viral facet of anti‑rheumatic drugs:
Lessons from COVID‑19. J Autoimmun 2020;111:102468.
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the
`Cytokine Storm’ in COVID‑19. J Infect 2020;80:607‑13.
Wang C, Wu H, Ding X, Ji H, Jiao P, Song H, et al. Does
infection of 2019 novel coronavirus cause acute and/or chronic
sialadenitis? Med Hypotheses 2020;140:109789.
Irani S, Jafari B. Expression of vimentin and CD44 in
mucoepidermoid carcinoma: A role in tumor growth. Indian J
Dent Res 2018;29:333‑40.
Irani S, Dehghan A. Expression of vascular endothelial‑cadherin
in mucoepidermoid carcinoma: Role in cancer development.
J Int Soc Prev Community Dent 2017;7:301‑7.
Irani S, Dehghan A. The expression and functional significance
of vascular endothelial‑cadherin, CD44, and vimentin in oral
squamous cell carcinoma. J Int Soc Prev Community Dent
;8:110‑7.
Ramos I, Stamatakis K, Oeste CL, Pérez‑Sala D. Vimentin as
a multifaceted player and potential therapeutic target in viral
infections. Int J Mol Sci 2020;21:4675.
Suprewicz Ł, Swoger M, Gupta S, Piktel E, Byfield FJ,
Iwamoto DV, et al. Vimentin binds to SARS‑CoV‑2 spike
protein and antibodies targeting extracellular vimentin block
in vitro uptake of SARS‑CoV‑2 virus‑like particles. bioRxiv
Pre‑print. doi: 10.1101/2021.01.08.425793.
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM.
COVID‑19: Immunology and treatment options. Clin
Immunol (Orlando, Fla) 2020;215:108448. doi: 10.1016/j.clim.
108448.
Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, et al.
T cell responses to whole SARS coronavirus in humans.
J Immunol (Baltimore, Md: 1950) 2008;181:5490‑500.
Hoffmann M, Kleine‑Weber H, Schroeder S, Krüger N,
Herrler T, Erichsen S, et al. SARS‑CoV‑2 cell entry depends
on ACE2 and TMPRSS2 and is blocked by a clinically proven
protease inhibitor. Cell 2020;181:271‑80.e8.
Magrone T, Magrone M, Jirillo E. Focus on receptors for
coronaviruses with special reference to angiotensin‑converting
enzyme 2 as a potential drug target ‑ A perspective. Endocr
Metab Immune Disord Drug Targets 2020;20:807‑11.
Mubarak A, Alturaiki W, Hemida MG. Middle east respiratory
syndrome coronavirus (MERS‑CoV): Infection, immunological
response, and vaccine development. J Immunol Res
;2019:6491738. doi: 10.1155/2019/6491738.
Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q,
Meredith HR, et al. The incubation period of coronavirus
disease 2019 (COVID‑19) from publicly reported confirmed
cases: Estimation and application. Ann Intern Med
;172:577‑82.
Jiang X, Rayner S, Luo MH. Does SARS‑CoV‑2 has a
longer incubation period than SARS and MERS? J Med Virol
;92:476‑8.
Ahmadpoor P, Rostaing L. Why the immune system fails to
mount an adaptive immune response to a Covid‑19 infection.
Transpl Int 2020;33:824‑5.
Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra‑respiratory
manifestations of COVID‑19. Int J Antimicrob Agents
;56:106024. doi: 10.1016/j.ijantimicag. 2020.106024.
Chu H, Chan JFW, Yuen TTT, Shuai H, Yuan S, Wang Y, et al.
Comparative tropism, replication kinetics, and cell damage
profiling of SARS‑CoV‑2 and SARS‑CoV with implications
for clinical manifestations, transmissibility, and laboratory
studies of COVID‑19: An observational study. Lancet Microbe
;1:e14‑23.
Ryan PM, Caplice NM. Is adipose tissue a reservoir for viral
spread, immune activation and cytokine amplification in
COVID‑19. Obesity 2020;28:1191‑4.
Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA,
et al. Clinical aspects and outcomes of 70 patients with
Middle East respiratory syndrome coronavirus infection:
A single‑center experience in Saudi Arabia. Int J Infect Dis
;29:301‑6.
Tynell J, Westenius V, Rönkkö E, Munster VJ, Melén K,
Österlund P, et al. Middle East respiratory syndrome coronavirus
shows poor replication but significant induction of antiviral
responses in human monocyte‑derived macrophages and
dendritic cells. J Gen Virol 2016;97:344‑55.
Liang Y, Wang M‑L, Chien C‑S, Yarmishyn AA, Yang YP,
Lai W‑Y, et al. Highlight of immune pathogenic response
and hematopathologic effect in SARS‑CoV, MERS‑CoV, and
SARS‑Cov‑2 infection. Front Immunol 2020;11. doi: 10.3389/
fimmu. 2020.01022.
Zhou J, Chu H, Li C, Wong BH, Cheng ZS, Poon VK, et al.
Active replication of Middle East respiratory syndrome
coronavirus and aberrant induction of inflammatory cytokines
and chemokines in human macrophages: Implications for
pathogenesis. J Infect Dise 2014;209:1331‑42.
Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM,
Suliman BA. MERS‑CoV infection in humans is associated with
a pro‑inflammatory Th1 and Th17 cytokine profile. Cytokine
;104:8‑13.
Shin HS, Kim Y, Kim G, Lee JY, Jeong I, Joh JS, et al. Immune
responses to Middle East respiratory syndrome coronavirus
during the acute and convalescent phases of human infection.
Clin Infect Dis 2019;68:984‑92.
Alosaimi B, Hamed ME, Naeem A, Alsharef AA, AlQahtani SY,
AlDosari KM, et al. MERS‑CoV infection is associated with
downregulation of genes encoding Th1 and Th2 cytokines/
chemokines and elevated inflammatory innate immune response
in the lower respiratory tract. Cytokine 2020;126:154895. doi:
1016/j.cyto. 2019.154895.
Costela‑Ruiz VJ, Illescas‑Montes R, Puerta‑Puerta JM, Ruiz C,
Melguizo‑Rodríguez L. SARS‑CoV‑2 infection: The role of
cytokines in COVID‑19 disease. Cytokine Growth Factor Rev
;54:62‑75.
Kalfaoglu B, Almeida‑Santos J, Tye CA, Satou Y, Ono M. T‑cell
dysregulation in COVID‑19. Biochem Biophys Res Commun
;538:204‑10.
Fielding CA, McLoughlin RM, McLeod L, Colmont CS,
Najdovska M, Grail D, et al. IL‑6 regulates neutrophil trafficking
during acute inflammation via STAT3. J Immunol (Baltimore,
Md: 1950) 2008;181:2189‑95.
McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role
of cytokines including interleukin‑6 in COVID‑19 induced
pneumonia and macrophage activation syndrome‑like disease.
Autoimmun Rev 2020;19:102537. doi: 10.1016/j.autrev.
102537.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical
features of patients infected with 2019 novel coronavirus in
Wuhan, China. Lancet 2020;395:497‑506.
Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release
syndrome in severe COVID‑19: Interleukin‑6 receptor
antagonist tocilizumab may be the key to reduce mortality.
Int J Antimicrobial Agents 2020;55:105954. doi: 10.1016/j.
ijantimicag. 2020.105954.
Yang Y, Shen C, Li J, Yuan J, Wei J, Huang F, et al. Plasma
IP‑10 and MCP‑3 levels are highly associated with disease
severity and predict the progression of COVID‑19. J Allergy
Clin Immunol 2020;146:119‑27.
Aboagye JO, Yew CW, Ng OW, Monteil VM, Mirazimi A,
Tan YJ. Overexpression of the nucleocapsid protein of Middle
East respiratory syndrome coronavirus up‑regulates CXCL10.
;38. doi: 10.1042/BSR20181059.
Kim ES, Choe PG. Clinical progression and cytokine profiles
of Middle East respiratory syndrome coronavirus infection.
J Korean Med Sci 2016;31:1717‑25.
Majumdar S, Murphy PM. Chemokine regulation during
epidemic coronavirus infection. Front Pharmacol 2021;11. doi:
3389/fphar. 2020.600369.
He L, Ding Y, Zhang Q, Che X, He Y, Shen H, et al.
Expression of elevated levels of pro‑inflammatory cytokines in
SARS‑CoV‑infected ACE2+cells in SARS patients: Relation
to the acute lung injury and pathogenesis of SARS. J Pathol
;210:288‑97.
Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A,
et al. Comparative and kinetic analysis of viral shedding and
immunological responses in MERS patients representing a broad
spectrum of disease severity. Sci Rep 2016;6:25359.
Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al.
Plasma inflammatory cytokines and chemokines in severe acute
respiratory syndrome. Clin Exp Immunol 2004;136:95‑103.
Al‑Abdallat MM, Payne DC, Alqasrawi S, Rha B,
Tohme RA, Abedi GR, et al. Hospital‑associated outbreak of
Middle East respiratory syndrome coronavirus: A serologic,
epidemiologic, and clinical description. Clin Infect Dis
;59:1225‑33.
Li G, Chen X, Xu A. Profile of specific antibodies to the
SARS‑associated coronavirus. N Engl J Med 2003;349:508‑9.
Hou H, Wang T, Zhang B, Luo Y, Mao L, Wang F, et al.
Detection of IgM and IgG antibodies in patients with coronavirus
disease 2019. Clin Transl Immunol 2020;9:e01136.
Jayamohan H, Lambert CJ, Sant HJ, Jafek A, Patel D, Feng H,
et al. SARS‑CoV‑2 pandemic: A review of molecular diagnostic
tools including sample collection and commercial response
with associated advantages and limitations. Anal Bioanal Chem
;413:49‑71.
Borges L, Pithon‑Curi TC, Curi R, Hatanaka E. COVID‑19
and neutrophils: The relationship between hyperinflammation
and neutrophil extracellular traps. Mediators Inflamm
;2020:8829674. doi: 10.1155/2020/8829674.
Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I,
et al. Induction of pro‑inflammatory cytokines (IL‑1 and
IL‑6) and lung inflammation by Coronavirus‑19 (COVI‑19
or SARS‑CoV‑2): Anti‑inflammatory strategies. J Biol Regul
Homeost Agents 2020;34:327‑31.
Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike
protein‑induced innate immune response occurs via activation of
the NF‑κB pathway in human monocyte macrophages in vitro.
Virus Res 2009;142:19‑27.
Aboudounya MM, Heads RJ. COVID‑19 and toll‑like receptor
(TLR4): SARS‑CoV‑2 may bind and activate TLR4 to
increase ACE2 expression, facilitating entry and causing
hyperinflammation. Mediators Inflamm 2021;2021:8874339. doi:
1155/2021/8874339.
Veras FP, Pontelli MC, Silva CM, Toller‑Kawahisa JE,
de Lima M, Nascimento DC, et al. SARS‑CoV‑2‑triggered
neutrophil extracellular traps mediate COVID‑19 pathology.
J Exp Med 2020;217:e20201129. doi: 10.1084/jem. 20201129.
Irani S, Barati I, Badiei M. Periodontitis and oral cancer‑current
concepts of the etiopathogenesis. Oncol Rev 2020;14:465.
Rizzo P, Dalla Sega FV, Fortini F, Marracino L, Rapezzi C,
Ferrari R. COVID‑19 in the heart and the lungs: Could
we “Notch” the inflammatory storm? Basic Res Cardiol
;115:31.
Schett G, Sticherling M, Neurath MF. COVID‑19: Risk for
cytokine targeting in chronic inflammatory diseases? Nat Rev
Immunol 2020;20:271‑2.
Heijink IH, Vellenga E, Borger P, Postma DS, de Monchy JG,
Kauffman HF. Interleukin‑6 promotes the production of
interleukin‑4 and interleukin‑5 by interleukin‑2‑dependent
and ‑independent mechanisms in freshly isolated human T cells.
Immunology 2002;107:316‑24.
Baseler LJ, Falzarano D, Scott DP, Rosenke R, Thomas T,
Munster VJ, et al. An acute immune response to middle east
respiratory syndrome coronavirus replication contributes to viral
pathogenicity. Am J Pathol 2016;186:630‑8.
Zhang YY, Li BR, Ning BT. The comparative immunological
characteristics of SARS‑CoV, MERS‑CoV, and SARS‑CoV‑2
coronavirus infections. Front Immunol 2020;11:2033.
İnandıklıoğlu N, Akkoc T. Immune responses to SARS‑CoV,
MERS‑CoV and SARS‑CoV‑2. In: Turksen K, editor. Cell
Biology and Translational Medicine, Volume 9: Stem Cell‑Based
Therapeutic Approaches in Disease. Cham: Springer International
Publishing; 2020. p. 5‑12.
Booz GW, Altara R, Eid AH, Wehbe Z, Fares S, Zaraket H,
et al. Macrophage responses associated with COVID‑19:
A pharmacological perspective. Eur J Pharmacol
;887:173547. doi: 10.1016/j.ejphar. 2020.173547.
Haick AK, Rzepka JP, Brandon E, Balemba OB, Miura TA.
Neutrophils are needed for an effective immune response against
pulmonary rat coronavirus infection, but also contribute to
pathology. J Gen Virol 2014;95:578‑90.
Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W,
et al. Chemokine up‑regulation in SARS‑coronavirus–
infected, monocyte‑derived human dendritic cells. Blood
;106:2366‑74.
Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M.
Contribution of monocytes and macrophages to the local tissue
inflammation and cytokine storm in COVID‑19: Lessons from
SARS and MERS, and potential therapeutic interventions. Life
Sci 2020;257:118102. doi: 10.1016/j.lfs. 2020.118102.
Ahmed F, Jo D‑H, Lee S‑H. Can natural killer cells be a
principal player in Anti‑SARS‑CoV‑2 immunity? Front Immunol
;11. doi: 10.3389/fimmu. 2020.586765.
Lagunas‑Rangel FA. Neutrophil‑to‑lymphocyte ratio and
lymphocyte‑to‑C‑reactive protein ratio in patients with severe
coronavirus disease 2019 (COVID‑19): A meta‑analysis. J Med
Virol 2020;92:1733‑4.
Sun DW, Zhang D, Tian RH, Li Y, Wang YS, Cao J, et al.
The underlying changes and predicting role of peripheral blood
inflammatory cells in severe COVID‑19 patients: A sentinel?
Clin Chim Acta 2020;508:122‑9.
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction
and functional exhaustion of T cells in patients with coronavirus
disease 2019 (COVID‑19). Front Immunol 2020;11. doi:
3389/fimmu. 2020.00827.
Ganji A, Farahani I, Khansarinejad B, Ghazavi A,
Mosayebi G. Increased expression of CD8 marker on T‑cells in
COVID‑19 patients. Blood Cells Mol Dis 2020;83:102437. doi:
1016/j.bcmd. 2020.102437.
He Z, Zhao C, Dong Q, Zhuang H, Song S, Peng G, et al.
Effects of severe acute respiratory syndrome (SARS) coronavirus
infection on peripheral blood lymphocytes and their subsets. Int
J Infect Dis 2005;9:323‑30.
Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4⁺T
cells in immunity to viruses. Nat Rev Immunol 2012;12:136‑48.
Siracusano G, Pastori C, Lopalco L. Humoral immune responses
in COVID‑19 patients: A window on the state of the art. Front
Immunol 2020;11. doi: 10.3389/fimmu. 2020.01049.
Chen Z, John Wherry E. T cell responses in patients with
COVID‑19. Nat Rev Immunol. 2020;20:529‑36.
Zhang C, Wang XM, Li SR, Twelkmeyer T, Wang WH,
Zhang SY, et al. NKG2A is a NK cell exhaustion checkpoint for
HCV persistence. Nat Commun 2019;10:1507.
Irani S. Emerging insights into the biology of metastasis:
A review article. Iran J Basic Med Sci 2019;22:833‑47.
Abassi Z, Knaney Y, Karram T, Heyman SN. The lung
macrophage in SARS‑CoV‑2 infection: A friend or a foe? Front
Immunol 2020;11:1312. doi: 10.3389/fimmu. 2020.01312.
Masselli E, Vaccarezza M, Carubbi C, Pozzi G, Presta V,
Mirandola P, et al. NK cells: A double edge sword against
SARS‑CoV‑2. Adv Biol Regul 2020;77:100737. doi: 10.1016/j.
jbior. 2020.100737.
Hemmat N, Derakhshani A, Bannazadeh Baghi H, Silvestris N,
Baradaran B, De Summa S. Neutrophils, crucial, or harmful
immune cells involved in coronavirus infection: A bioinformatics
study. Front Genet 2020;11. doi: 10.3389/fgene. 2020.00641.
Reusch N, De Domenico E, Bonaguro L, Schulte‑Schrepping J,
Baßler K, Schultze JL, et al. Neutrophils in COVID‑19. Front
Immunol 2021;12. doi: 10.3389/fimmu. 2021.652470.
Borges RC, Hohmann MS, Borghi SM. Dendritic cells in
COVID‑19 immunopathogenesis: Insights for a possible role in
determining disease outcome. Int Rev Immunol 2021;40:108‑125.
Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M,
et al. Distinct immune response in two MERS‑CoV‑infected
patients: Can we go from bench to bedside? PloS One
;9:e88716.
Josset L, Menachery VD, Gralinski LE, Agnihothram S, Sova P,
Carter VS, et al. Cell host response to infection with novel human
coronavirus EMC predicts potential antivirals and important
differences with SARS coronavirus. mBio 2013;4:e00165‑13.
Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J,
et al. Innate immune response of human alveolar type II cells
infected with severe acute respiratory syndrome‑coronavirus. Am
J Respir Cell Mol Biol 2013;48:742‑8.
Cheung CY, Poon LL, Ng IH, Luk W, Sia SF, Wu MH, et al.
Cytokine responses in severe acute respiratory syndrome
coronavirus‑infected macrophages in vitro: Possible relevance to
pathogenesis. J Virol 2005;79:7819‑26.
Chu H, Zhou J, Wong BH, Li C, Cheng ZS, Lin X, et al.
Productive replication of Middle East respiratory syndrome
coronavirus in monocyte‑derived dendritic cells modulates innate
immune response. Virology 2014;454‑455:197‑205.
Jiang L, Wang N, Zuo T, Shi X, Poon K‑MV, Wu Y, et al. Potent
neutralization of MERS‑CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med
;6:234ra59‑ra59.
Liu I‑J, Hsueh P‑R, Lin C‑T, Chiu C‑Y, Kao C‑L, Liao M‑Y,
et al. Disease‑specific B cell epitopes for serum antibodies from
patients with severe acute respiratory syndrome (SARS) and
serologic detection of SARS antibodies by epitope‑based peptide
antigens. J Infect Dis 2004;190:797‑809.
Nielsen SC, Yang F, Hoh RA, Jackson KJ, Roeltgen K, Lee JY,
et al. B cell clonal expansion and convergent antibody responses
to SARS‑CoV‑2. Res Sq [Preprint] 2020. doi: 10.21203/rs.
rs‑27220/v1.
Meng L, Hua F. Coronavirus disease 2019 (COVID‑19):
Emerging and future challenges for dental and oral medicine.
J Dent Res 2020;99:481‑7.
Peng L, Liu J, Xu W, Luo Q, Chen D, Lei Z, et al. SARS‑CoV‑2
can be detected in urine, blood, anal swabs, and oropharyngeal
swabs specimens. J Med Virol 2020;92:1676‑80.
To KK‑W, Tsang OT‑Y, Yip CC‑Y, Chan K‑H, Wu T‑C,
Chan JM‑C, et al. Consistent detection of 2019 novel coronavirus
in saliva. Clin Infect Dis 2020;71:841‑3.
Chen L, Zhao J, Peng J, Li X, Deng X, Geng Z, et al. Detection
of 2019‑nCoV in saliva and characterization of oral symptoms
in COVID‑19 patients. 2020. SSRN 3556665. Available from:
https://ssrn.com/abstract=3557140.
Karimi S, Arabi A, Shahraki T, Safi S. Detection of severe acute
respiratory syndrome Coronavirus‑2 in the tears of patients with
Coronavirus disease 2019. Eye 2020;34:1220‑3.
Khatami F, Saatchi M, Zadeh SST, Aghamir ZS, Shabestari AN,
Reis LO, et al. A meta‑analysis of accuracy and sensitivity
of chest CT and RT‑PCR in COVID‑19 diagnosis. Sci Rep
;10:22402.
Liu J, Babka AM, Kearney BJ, Radoshitzky SR, Kuhn JH,
Zeng X. Molecular detection of SARS‑CoV‑2 in formalin‑fixed,
paraffin‑embedded specimens. JCI Insight 2020;5:e139042.
Yuan X, Yang C, He Q, Chen J, Yu D, Li J, et al. Current and
perspective diagnostic techniques for COVID‑19. ACS Infect Dis
;6:1998‑2016.
Chang M‑S, Lu Y‑T, Ho S‑T, Wu C‑C, Wei T‑Y, Chen C‑J,
et al. Antibody detection of SARS‑CoV spike and nucleocapsid
protein. Biochem Biophys Res Commun 2004;314:931‑6.
Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R.
Systematic review with meta‑analysis of the accuracy of diagnostic
tests for COVID‑19. Am J Infect Control 2021;49:21‑9.
Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A,
Osborne M, Li VYC, et al. Diagnosing COVID‑19: The disease
and tools for detection. ACS Nano 2020;14:3822‑35.
Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection
of SARS‑CoV‑2 in different types of clinical specimens. JAMA
;323:1843‑4.
Zitek T. The appropriate use of testing for COVID‑19. West J
Emerg Med 2020;21:470‑2.
Chan KH, Poon LL, Cheng VC, Guan Y, Hung IF, Kong J,
et al. Detection of SARS coronavirus in patients with suspected
SARS. Emerg Infect Dis 2004;10:294‑9.
Farooq HZ, Davies E, Ahmad S, Machin N, Hesketh L,
Guiver M, et al. Middle East respiratory syndrome
coronavirus (MERS‑CoV)‑Surveillance and testing in North
England from 2012 to 2019. Int J Infect Dis 2020;93:237‑44.
Huang P, Wang H, Cao Z, Jin H, Chi H, Zhao J, et al. A rapid
and specific assay for the detection of MERS‑CoV. Front
Microbiol 2018;9:1101.
Modjarrad K. Treatment strategies for Middle East respiratory
syndrome coronavirus. J Virus Erad 2016;2:1‑4.
Conti P, Ronconi G, Caraffa A, Gallenga C, Ross R, Frydas I,
et al. Induction of pro‑inflammatory cytokines (IL‑1 and
IL‑6) and lung inflammation by Coronavirus‑19 (COVI‑19
or SARS‑CoV‑2): Anti‑inflammatory strategies. J Biol Regul
Homeost Agents 2020;34:327‑331.
Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ,
et al. Comparative therapeutic efficacy of remdesivir and
combination lopinavir, ritonavir, and interferon beta against
MERS‑CoV. Nat Commun 2020;11:222.
de Candia P, Prattichizzo F, Garavelli S, Matarese G.
T cells: Warriors of SARS‑CoV‑2 infection. Trends Immunol
;42:18‑30.
Kritas SK, Ronconi G, Caraffa A, Gallenga CE, Ross R, Conti P.
Mast cells contribute to coronavirus‑induced inflammation: New
anti‑inflammatory strategy. J Biol Regul Homeost Agents 2020;34:9‑14.
Dziedzic A, Wojtyczka R. The impact of coronavirus
infectious disease 19 (COVID‑19) on oral health. Oral Dis
;27:703‑6.
Runfeng L, Yunlong H, Jicheng H, Weiqi P,
Qinhai M, Yongxia S, et al. Lianhuaqingwen exerts
anti‑viral and anti‑inflammatory activity against novel
coronavirus (SARS‑CoV‑2). Pharmacol Res 2020;156:104761.
doi: 10.1016/j.phrs. 2020.104761.
Selvaraj V, Dapaah‑Afriyie K, Finn A, Flanigan TP. Short‑term
dexamethasone in Sars‑CoV‑2 patients. R I Med J (2013)
;103:39‑43.
Dai L, Gao GF. Viral targets for vaccines against COVID‑19.
Nat Rev Immunol 2021;21:73‑82.
Marian AJ. Current state of vaccine development and targeted
therapies for COVID‑19: Impact of basic science discoveries.
Cardiovasc Pathol 2021;50:107278. doi: 10.1016/j.carpath.
107278.
Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A,
Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA
Covid‑19 vaccine. N Engl J Med 2020;383:2603‑15.