Potential Regulation of NF‑κB by Curcumin in Coronavirus‑Induced Cytokine Storm and Lung Injury
Abstract
Keywords
Full Text:
PDFReferences
World Health Organization. Infection Prevention and Control
Guidance for Long‑term Care Facilities in the Context of
COVID‑19: Interim Guidance, 21 March 2020. World Health
Organization; 2020.
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis
of coronavirus disease (COVID‑19) outbreak. J Autoimmun
:102433. doi: 10.1016/j.jaut. 2020.102433.
Satija N, Lal SK. The molecular biology of SARS coronavirus.
Ann N Y Acad Sci 2007;1102:26‑38.
Spencer K‑A, Dee M, Britton P, Hiscox JA. Role of
phosphorylation clusters in the biology of the coronavirus
infectious bronchitis virus nucleocapsid protein. Virology
;370:373‑81.
Lai MM. Coronavirus: Organization, replication and expression
of genome. Ann Rev Microbiol 1990;44:303.
Prentice E, Denison MR. The Cell Biology of Coronavirus
Infection. The Nidoviruses. Springer Berlin/Heidelberg; 2001.
p. 609‑14.
de Wit E, Rasmussen AL, Falzarano D, Bushmaker T,
Feldmann F, Brining DL, et al. Middle East respiratory
syndrome coronavirus (MERS‑CoV) causes transient lower
respiratory tract infection in rhesus macaques. Proc Natl Acad
Sci 2013;110:16598‑603.
Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients
with coronavirus disease 2019 (COVID‑19). JAMA Cardiol
;5:811‑8.
Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during
highly pathogenic human coronavirus infections. Liver Int
;40:998‑1004.
Lau K‑K, Yu W‑C, Chu C‑M, Lau S‑T, Sheng B, Yuen K‑Y.
Possible central nervous system infection by SARS coronavirus.
Emerg Infect Dis 2004;10:342‑4.
Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, et al.
Acute renal impairment in coronavirus‑associated severe acute
respiratory syndrome. Kidney Int 2005;67:698‑705.
Zheng Y‑Y, Ma Y‑T, Zhang J‑Y, Xie X. COVID‑19 and the
cardiovascular system. Nat Rev Cardiol 2020;17:259‑60.
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence
of comorbidities in the novel Wuhan coronavirus (COVID‑19)
infection: A systematic review and meta‑analysis. Int J Infect Dis
;10. doi: 10.1016/j.ijid. 2020.03.017
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al.
Pathological findings of COVID‑19 associated with acute
respiratory distress syndrome. Lancet Respir Med 2020;8:420‑2.
Channappanavar R, Perlman S. Pathogenic human coronavirus
infections: Causes and consequences of cytokine storm and
immunopathology. Semin Immunopathol 2017;39:529‑39.
Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, et al.
An interferon‐γ‐related cytokine storm in SARS patients. J Med
Virol 2005;75:185‑94.
Netea MG, van der Meer JW, van Deuren M, Kullberg BJ.
Proinflammatory cytokines and sepsis syndrome: Not enough, or
too much of a good thing? Trends Immunol 2003;24:254‑8.
Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M,
et al. Current concepts in the diagnosis and management of
cytokine release syndrome. Blood 2014;124:188‑95.
Shimabukuro‑Vornhagen A, Gödel P, Subklewe M, Stemmler HJ,
Schlößer HA, Schlaak M, et al. Cytokine release syndrome.
J Immunother Cancer 2018;6:56. doi: 10.1186/s40425‑0180343‑9.
Fitzgerald JC, Weiss SL, Maude SL, Barrett DM, Lacey SF,
Melenhorst JJ, et al. Cytokine release syndrome after chimeric
antigen receptor T cell therapy for acute lymphoblastic leukemia.
Crit Care Med 2017;45:e124‑31.
Porter D, Frey N, Wood PA, Weng Y, Grupp SA. Grading of
cytokine release syndrome associated with the CAR T cell
therapy tisagenlecleucel. J Hematol Oncol 2018;11:35. doi:
1186/s13045‑018‑0571‑y.
Park JH, Romero FA, Taur Y, Sadelain M, Brentjens RJ,
Hohl TM, et al. Cytokine release syndrome grade as a predictive
marker for infections in patients with relapsed or refractory
B‑cell acute lymphoblastic leukemia treated with chimeric
antigen receptor T cells. Clin Infect Dis 2018;67:533‑40.
Gauthier J, Turtle CJ. Insights into cytokine release syndrome
and neurotoxicity after CD19‑specific CAR‑T cell therapy. Curr
Res Transl Med 2018;66:50‑2.
Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A,
Genua M, et al. Monocyte‑derived IL‑1 and IL‑6 are differentially
required for cytokine‑release syndrome and neurotoxicity due to
CAR T cells. Nat Med 2018;24:739‑48.
Maude SL, Barrett D, Teachey DT, Grupp SA. Managing
cytokine release syndrome associated with novel T cell‑engaging
therapies. Cancer J 2014;20:119‑22.
Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL,
Frey N, et al. Identification of predictive biomarkers for cytokine
release syndrome after chimeric antigen receptor T‑cell therapy
for acute lymphoblastic leukemia. Cancer Discov 2016;6:664‑79.
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR,
Katze MG. Into the eye of the cytokine storm. Microbiol Mol
Biol Rev 2012;76:16‑32.
Us D. [Cytokine storm in avian influenza]. Mikrobiyol Bul
;42:365‑80.
Teijaro JR, Walsh KB, Rice S, Rosen H, Oldstone MB. Mapping
the innate signaling cascade essential for cytokine storm during
influenza virus infection. Proc Natl Acad Sci 2014;111:3799‑804.
Wang H, Ma S. The cytokine storm and factors determining the
sequence and severity of organ dysfunction in multiple organ
dysfunction syndrome. Am J Emerg Med 2008;26:711‑5.
Boomer JS, To K, Chang KC, Takasu O, Osborne DF,
Walton AH, et al. Immunosuppression in patients who die of
sepsis and multiple organ failure. JAMA 2011;306:2594‑605.
Liu T, Zhang L, Joo D, Sun S‑C. NF‑κB signaling in
inflammation. Signal Transduct Target Ther 2017;2:1‑9. doi:
1038/sigtrans. 2017.23.
Dash P, Thomas PG. Host detection and the stealthy phenotype
in influenza virus infection. Influenza Pathogenesis and Control.
Vol II. Springer; 2014. p. 121‑47.
Khanmohammadi S, Rezaei N. Role of Toll‐like receptors in the
pathogenesis of COVID‐19. J Med Virol 2021;93:2735‑9.
Onofrio L, Caraglia M, Facchini G, Margherita V, Placido SD,
Buonerba C. Toll‑like receptors and COVID‑19: A two‑faced
story with an exciting ending. Future Sci 2020;6:FSO605.
Zhang Y, Lu Y, Ma L, Cao X, Xiao J, Chen J, et al. Activation
of vascular endothelial growth factor receptor‑3 in macrophages
restrains TLR4‑NF‑κB signaling and protects against endotoxin
shock. Immunity 2014;40:501‑14.
Park S‑J, Youn H‑S. Isoliquiritigenin suppresses the
toll − interleukin‑1 receptor domain‑containing adapter
inducing interferon‑β (TRIF)‑dependent signaling pathway
of toll‑like receptors by targeting TBK1. J Agric Food Chem
;58:4701‑5.
O’Neill LA, Bowie AG. The family of five:
TIR‑domain‑containing adaptors in Toll‑like receptor signalling.
Nat Rev Immunol 2007;7:353‑64.
Aboudounya MM, Heads RJ. COVID‑19 and toll‑like receptor
(TLR4): SARS‑CoV‑2 may bind and activate TLR4 to
increase ACE2 expression, facilitating entry and causing
hyperinflammation. Mediators Inflamm 2021;2021:8874339. doi:
1155/2021/8874339.
Brandão SC, Ramos JdOX, Dompieri LT, Godoi ET,
Figueiredo JL, Sarinho ESC, et al. Is toll‑like receptor 4
involved in the severity of COVID‑19 pathology in patients with
cardiometabolic comorbidities? Cytokine Growth Factor Rev
;58:102‑10.
Bortolotti D, Gentili V, Rizzo S, Schiuma G, Beltrami S,
Strazzabosco G, et al. TLR3 and TLR7 RNA sensor activation
during SARS‑COV‑2 infection. Microorganisms 2021;9:1820.
doi: 10.3390/microorganisms9091820.
Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P,
et al. TLR2 senses the SARS‑CoV‑2 envelope protein to produce
inflammatory cytokines. Nat Immunol 2021;22:1‑10.
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R.
Features, Evaluation and Treatment Coronavirus (COVID‑19).
Statpearls: StatPearls Publishing; 2022.
Lu H. Drug treatment options for the 2019‑new
coronavirus (2019‑nCoV). Biosci Trends 2020;14:69‑71.
Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P,
Tajik H, Abubakar S, Zandi K. A review on antibacterial,
antiviral, and antifungal activity of curcumin. BioMed Res Int 2014;2014. doi: 10.1155/2014/186864.
Chen D‑Y, Shien J‑H, Tiley L, Chiou S‑S, Wang S‑Y,
Chang T‑J, et al. Curcumin inhibits influenza virus infection and
haemagglutination activity. Food Chem 2010;119:1346‑51.
Mathew D, Hsu W‑L. Antiviral potential of curcumin. J Funct
Foods 2018;40:692‑9.
Fan Z, Yao J, Li Y, Hu X, Shao H, Tian X. Anti‑inflammatory
and antioxidant effects of curcumin on acute lung injury in a
rodent model of intestinal ischemia reperfusion by inhibiting the
pathway of NF‑Kb. Int J Clin Exp Pathol 2015;8:3451‑9.
Lubbad A, Oriowo M, Khan I. Curcumin attenuates inflammation
through inhibition of TLR‑4 receptor in experimental colitis. Mol
Cell Biochem 2009;322:127‑35.
Jurenka JS. Anti‑inflammatory properties of curcumin, a major
constituent of Curcuma longa: A review of preclinical and
clinical research. Altern Med Rev 2009;14:141‑53.
Menon VP, Sudheer AR. Antioxidant and anti‑inflammatory
properties of curcumin. The Molecular Targets and Therapeutic Uses
of Curcumin in Health and Disease. Springer; 2007. p. 105‑25.
Ou JL, Mizushina Y, Wang SY, Chuang DY, Nadar M, Hsu WL.
Structure–activity relationship analysis of curcumin analogues on
anti‐influenza virus activity. FEBS J 2013;280:5829‑40.
Yadav V, Mishra K, Singh D, Mehrotra S, Singh V.
Immunomodulatory effects of curcumin. Immunopharmacol
Immunotoxicol 2005;27:485‑97.
Zahedipour F, Hosseini SA, Sathyapalan T, Majeed M,
Jamialahmadi T, Al‐Rasadi K, et al. Potential effects of
curcumin in the treatment of COVID‐19 infection. Phytother Res
;34:2911‑20.
Soni VK, Mehta A, Ratre YK, Tiwari AK, Amit A, Singh RP,
et al. Curcumin, a traditional spice component, can hold the
promise against COVID‑19? Eur J Pharmacol 2020;886:173551.
doi: 10.1016/j.ejphar. 2020.173551.
Babaei F, Nassiri‐Asl M, Hosseinzadeh H. Curcumin (a
constituent of turmeric): New treatment option against
COVID‐19. Food Sci Nutr 2020;8:5215‑27.
Rocha FA, de Assis MR. Curcumin as a potential treatment for
COVID‐19. Phytother Res 2020;34:2085‑7.
Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, et al. Aging
exacerbates impairments of cerebral blood flow autoregulation
and cognition in diabetic rats. Geroscience 2020;42:1387‑410.
Velavan TP, Meyer CG. The Covid‑19 epidemic. Trop Med Int
Health 2020;25:278‑80.
Okabayashi T, Kariwa H, Yokota Si, Iki S, Indoh T, Yokosawa N,
et al. Cytokine regulation in SARS coronavirus infection compared
to other respiratory virus infections. J Med Virol 2006;78:417‑24.
Yi Y, Lagniton PN, Ye S, Li E, Xu R‑H. COVID‑19: What has
been learned and to be learned about the novel coronavirus
disease. Int J Biol Sci 2020;16:1753‑66.
Thiel V, Weber F. Interferon and cytokine responses to
SARS‑coronavirus infection. Cytokine Growth Factor Rev
;19:121‑32.
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus
infections and immune responses. J Med Virol 2020;92:424‑32.
Wang S, Zhang Y, Lui S, Peng H, Mackey V. Coronaviruses
and the associated potential therapeutics for the viral infections.
J Infect Dis Ther 2020;8. Available from: https://www.
researchgate.net/profile/Lichun‑Sun/publication/339796674_
Coronaviruses_and_the_Associated_Potential_Therapeutics_
for_the_Viral_Infections/links/5e6662d6a6fdcc37dd126b52/
Coronaviruses-and-the-Associated-Potential-Therapeutics‑for‑the‑
Viral‑Infections.pdf. [Last accessed on 2022 Mar 30].
Ye Q, Wang B, Mao J. Cytokine storm in COVID‑19 and
treatment. J Infect 2020;80:607‑13.
Ma L, Song K, Huang Y. Coronavirus disease 2019 (COVID‑19)
and cardiovascular complications. J Cardiothorac Vasc Anesth
;35:1860‑5.
Minoia F, Davì S, Alongi A, Ravelli A. Criteria for Cytokine
Storm Syndromes. Cytokine Storm Syndrome. Springer Berlin/
Heidelberg; 2019. p. 61‑79.
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID‑19:
Pathogenesis, cytokine storm and therapeutic potential of
interferons. Cytokine Growth Factor Rev 2020;85:104502. doi:
1016/j.meegid. 2020.104502.
Schulert GS, Zhang K. Genetics of Acquired Cytokine Storm
Syndromes. Cytokine Storm Syndrome. Springer Berlin/
Heidelberg; 2019. p. 113‑29.
Ye Q, Wang B, Mao J. The pathogenesis and treatment of
theCytokine Storm’in COVID‑19. J Infect 2020;80:607‑13.
Gupta KK, Khan MA, Singh SK. Constitutive inflammatory
cytokine storm: A major threat to human health. J Interferon
Cytokine Res 2020;40:19‑23.
Kawai T, Akira S. Signaling to NF‑κB by Toll‑like receptors.
Trends Mol Med 2007;13:460‑9.
Wang Q‑W, Su Y, Sheng J‑T, Gu L‑M, Zhao Y, Chen X‑X,
et al. Anti‑influenza a virus activity of rhein through regulating
oxidative stress, TLR4, Akt, MAPK, and NF‑κB signal
pathways. PloS One 2018;13:e0191793. doi: 10.1371/journal.
pone. 0191793.
Planz O. Influenza viruses and intracellular signalling pathways.
Berl Munch Tierarztl Wochenschrift 2006;119:101‑11.
Walsh KB, Teijaro JR, Wilker PR, Jatzek A, Fremgen DM,
Das SC, et al. Suppression of cytokine storm with a sphingosine
analog provides protection against pathogenic influenza virus.
Proc Natl Acad Sci 2011;108:12018‑23.
Xi‑zhi JG, Thomas PG. New fronts emerge in the
influenza cytokine storm. Semin Immunopathol Berlin/
Heidelberg 2017;39:541‑50.
Zhang X, Wu K, Wang D, Yue X, Song D, Zhu Y, et al.
Nucleocapsid protein of SARS‑CoV activates interleukin‑6
expression through cellular transcription factor NF‑κB. Virology
;365:324‑35.
DeDiego ML, Nieto‑Torres JL, Jimenez‑Guardeño JM,
Regla‑Nava JA, Castaño‑Rodriguez C, Fernandez‑Delgado R,
et al. Coronavirus virulence genes with main focus on
SARS‑CoV envelope gene. Virus Res 2014;194:124‑37.
Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike
protein‑induced innate immune response occurs via activation of
the NF‑κB pathway in human monocyte macrophages in vitro.
Virus Res 2009;142:19‑27.
DeDiego ML, Nieto‑Torres JL, Regla‑Nava JA,
Jimenez‑Guardeño JM, Fernandez‑Delgado R, Fett C, et al.
Inhibition of NF‑κB‑mediated inflammation in severe acute
respiratory syndrome coronavirus‑infected mice increases
survival. J Virol 2014;88:913‑24.
Yuk J‑M, Jo E‑K. Toll‑like receptors and innate immunity.
J Bacteriol Virol 2011;41:225‑35.
Trinchieri G, Sher A. Cooperation of Toll‑like receptor signals in
innate immune defence. Nat Rev Immunol 2007;7:179‑90.
Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol
;125:S24‑32.
Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF,
et al. A critical role for TLR4 in the pathogenesis of necrotizing
enterocolitis by modulating intestinal injury and repair.
J Immunol 2007;179:4808‑20.
Greenhill CJ, Rose‑John S, Lissilaa R, Ferlin W, Ernst M, Hertzog PJ, et al. IL‑6 trans‑signaling modulates
TLR4‑dependent inflammatory responses via STAT3. J Immunol
;186:1199‑208.
Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H,
et al. Role of adaptor TRIF in the MyD88‑independent toll‑like
receptor signaling pathway. Science 2003;301:640‑3.
Takeda K, Akira S. TLR signaling pathways. Semin Immunol
Berlin/Heidelberg 2004;16:3‑9.
Kircheis R, Haasbach E, Lueftenegger D, Heyken WT, Ocker M,
Planz O. NF‑κB pathway as a potential target for treatment of
critical stage COVID‑19 patients. Front Immunol 2020;11:3446.
Kandasamy M. NF‑κB signalling as a pharmacological target
in COVID‑19: Potential roles for IKKβ inhibitors. Naunyn
Schmiedebergs Arch Pharmacol 2021;394:561‑7.
Cheng Y‑F, Guo L, Xie Y‑S, Liu Y‑S, Zhang J, Wu Q‑W, et al.
Curcumin rescues aging‑related loss of hippocampal synapse
input specificity of long term potentiation in mice. Neurochem
Res 2013;38:98‑107.
Zhao J, Yu S, Zheng W, Feng G, Luo G, Wang L, et al.
Curcumin improves outcomes and attenuates focal cerebral
ischemic injury via antiapoptotic mechanisms in rats. Neurochem
Res 2010;35:374‑9.
Panchal HD, Vranizan K, Lee CY, Ho J, Ngai J, Timiras PS.
Early anti‑oxidative and anti‑proliferative curcumin effects on
neuroglioma cells suggest therapeutic targets. Neurochem Res
;33:1701‑10.
Cole GM, Teter B, Frautschy SA. Neuroprotective effects of
curcumin. The Molecular Targets and Therapeutic Uses of
Curcumin in Health and Disease. Springer; Berlin/Heidelberg
p. 197‑212.
Motaghinejad M, Karimian M, Motaghinejad O, Shabab B,
Yazdani I, Fatima S. Protective effects of various dosage of
curcumin against morphine induced apoptosis and oxidative stress
in rat isolated hippocampus. Pharmacol Rep 2015;67:230‑5.
Shojaii A, Motaghinejad M, Norouzi S, Motevalian M.
Evaluation of anti‑inflammatory and analgesic activity of the
extract and fractions of Astragalus hamosus in animal models.
Iran J Pharm Res 2015;14:263‑9.
Aggarwal BB, Harikumar KB. Potential therapeutic effects of
curcumin, the anti‑inflammatory agent, against neurodegenerative,
cardiovascular, pulmonary, metabolic, autoimmune and neoplastic
diseases. Int J Biochem Cell Biol 2009;41:40‑59.
Darvesh AS, Carroll RT, Bishayee A, Novotny NA,
Geldenhuys WJ, Van der Schyf CJ. Curcumin and
neurodegenerative diseases: A perspective. Expert Opin Invest
Drugs 2012;21:1123‑40.
Motaghinejad M, Motevalian M, Fatima S, Hashemi H,
Gholami M. Curcumin confers neuroprotection against
alcohol‑induced hippocampal neurodegeneration via
CREB‑BDNF pathway in rats. Biomed Pharmacother
;87:721‑40.
Huang H‑C, Chang P, Dai X‑L, Jiang Z‑F. Protective effects
of curcumin on amyloid‑β‑induced neuronal oxidative damage.
Neurochem Res 2012;37:1584‑97.
Akram M, Shahab‑Uddin AA, Usmanghani K, Hannan A,
Mohiuddin E, Asif M. Curcuma longa and curcumin: A review
article. Rom J Biol Plant Biol 2010;55:65‑70.
Xiao X, Yang M, Sun D, Sun S. Curcumin protects
against sepsis‑induced acute lung injury in rats. J Surg Res
;176:e31‑9.
Sandur SK, Ichikawa H, Pandey MK, Kunnumakkara AB,
Sung B, Sethi G, et al. Role of pro‑oxidants and
antioxidants in the anti‑inflammatory and apoptotic effects
of curcumin (diferuloylmethane). Free Radic Biol Med
:568‑80.
Yang M, Lee G, Si J, Lee S‑J, You HJ, Ko G. Curcumin shows
antiviral properties against norovirus. Molecules 2016;21:1401.
doi: 10.3390/molecules21101401.
Nandakumar DN, Nagaraj VA, Vathsala PG, Rangarajan P,
Padmanaban G. Curcumin‑artemisinin combination therapy for
malaria. Antimicro Agents Chemother 2006;50:1859‑60.
Isacchi B, Bergonzi MC, Grazioso M, Righeschi C, Pietretti A,
Severini C, et al. Artemisinin and artemisinin plus curcumin
liposomal formulations: Enhanced antimalarial efficacy against
Plasmodium berghei‑infected mice. Eur J Pharm Biopharm
;80:528‑34.
Rao TS, Basu N, Siddiqui H. Anti‑inflammatory activity of
curcumin analogues. Indian J Med Res 2013;137:574‑8.
Araujo C, Leon L. Biological activities of curcuma longa L.
Mem Inst Oswaldo Cruz 2001;96:723‑8.
Sordillo PP, Helson L. Curcumin suppression of cytokine
release and cytokine storm. A potential therapy for patients with
Ebola and other severe viral infections. In Vivo 2015;29:1‑4.
Ni H, Jin W, Zhu T, Wang J, Yuan B, Jiang J, et al. Curcumin
modulates TLR4/NF‑κB inflammatory signaling pathway
following traumatic spinal cord injury in rats. J Spinal Cord
Med 2015;38:199‑206.
Dai J, Gu L, Su Y, Wang Q, Zhao Y, Chen X, et al. Inhibition
of curcumin on influenza A virus infection and influenzal
pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and
NF‑κB pathways. Int Immunopharmacol 2018;54:177‑87.
Strimpakos AS, Sharma RA. Curcumin: Preventive and
therapeutic properties in laboratory studies and clinical trials.
Antioxid Redox Signal 2008;10:511‑46.