Collaborative Effects of Caloric Restriction and Quercetin on Age‑related Oxidative Stress Reduction through NQO1/Sirt1 Gene Regulation

Fereshte Ghorbani, Arezou Biyabani, Darya Ghadimi, Keivan Nedaei, Hadi Khodabandehloo, Mina Hemmati

Abstract


Background: Aging is caused by the progressive accumulation of various changes in the body, which is associated with an increase in free radicals and oxidative stress (OS). The aim of this study was to investigate the potential of caloric restriction (CR) and quercetin (QUER) in alleviating OS in aging and the involvement of the NAD (P) H quinone oxidoreductase 1 (NQO1)/SIRT1 signaling pathway in these effects. Methods: Two age groups of male Wistar rats (eight and 20 weeks of age) were included in the study and subdivided into normal diet (ND), ND with QUER (15 mg Kg‑1, IP), ND with CR, and ND with QUER and CR groups. The activities of catalase (CAT), paraoxonase (PON1), liver enzymes and lipid profiles, and the expression of SIRT1 and NQO1 genes were analyzed using the desired methods. Results: We showed higher liver enzymes (aspartate aminotransferase [AST], alanine transaminase [ALT], and alkaline phosphatase [ALP]), increased atherogenic lipids, and reduced PON1 activity in 20‑week‑old rats compared with eight‑week‑old rats, and the administration of QUER and CR restored these values to the normal range. The expression of NQO1 and SIRT1 is also affected by CR and QUER. CR alone and in combination with QUER significantly raised the expression of the NQO1 and SIRT1 genes. This effect was notable in SIRT1. Conclusions: QUER and CR together improved the detrimental effects of aging by modulating antioxidant signaling pathways, suggesting this combination is a complementary therapeutic regime for aging and age‑related diseases.

Keywords


Aging; caloric restriction; catalase; NQO1; paraoxonase; quercetin

Full Text:

PDF

References


Harman D. Aging: Overview. Annals N Y Acad Sci 2001;928:1 21.

Rubio Ruiz ME, Guarner Lans V, Cano Martínez A, Díaz Díaz E, Manzano Pech L, Gamas Magaña A, et al. Resveratrol and quercetin administration improves antioxidant DEFENSES and reduces fatty liver in metabolic syndrome rats. Molecules 2019;24:1297.

Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, et al. Mitochondria ros crosstalk in the control of cell death and aging. J Signal Transduct 2012;2012:329635.

Flekac M, Skrha J, Hilgertova J, Lacinova Z, Jarolimkova M. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet 2008;9:1 9.

Geng L, Liu Z, Zhang W, Li W, Wu Z, Wang W, et al. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell 2019;10:417 35.

Koubova J, Guarente L. How does calorie restriction work? Genes Dev 2003;17:313 21.

Ramis MR, Esteban S, Miralles A, Tan D X, Reiter RJ. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related diseases. Mech Ageing Dev 2015;146:28 41.

López LIuch G, Navas P. Calorie restriction as an intervention in ageing. J Physiol 2016;594:2043 60.

Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity 2008;16:2081 7.

Uddin S, Ahmad S. Dietary antioxidants protection against oxidative stress. Biochem Educ 1995;23:2 7.

Jones E, Hughes R. Quercetin, flavonoids and the life span of mice. Exp Gerontol 1982;17:213 7.

Rindler PM, Plafker SM, Szweda LI, Kinter M. High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem 2013;288:1979 90.

Costa LG, Vitalone A, Cole TB, Furlong CE. Modulation of paraoxonase (PON1) activity. Biochem Pharmacol 2005;69:541 50.

Dantoine TF, Debord J, Merle L, Lacroixramiandrisoa H, Bourzeix L, Charmes JP. Paraoxonase 1 activity: A new vascular marker of dementia? Ann Acad Sci 2002;977:96 101.

Alrawaiq NS, Atia A, Abdullah A. Comparative study between NAD (P) H: Quinone Oxidoreductase 1 (NQO1) and Heme Oxygenase 1 (HO 1) enzymes induced by an equal dose of different classes of dietary chemicals in mice liver. J Pure Appl Sci 2019;18:47784.

Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD (P) H: Quinone oxidoreductase 1 (NQO1): Chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 2000;129:77 97.

Azminah A, Erlina L, Radji M, Mun’im A, Syahdi RR, Yanuar A. In silico and in vitro identification of candidate SIRT1 activators from Indonesian medicinal plants compounds database. Comput Biol Chem 2019;83:107096.

Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocininduced diabetic rats. Comp Biochem Physiol Part C 2003;135: 35764.

Samimi F, Baazm M, Eftekhar E, Rajabi S, Goodarzi MT, Mashayekhi FJ. Possible antioxidant mechanism of coenzyme Q10 in diabetes: Impact on Sirt1/Nrf2 signaling pathways. Res Pharm Sci 2019;14:524 33.

Rezaei N, Zaherijamil Z, Moradkhani S, Saidijam M, Oshaghi EA, Tavilani H. Kiwifruit supplementation increases the activity of the paraoxonase enzyme and decreases oxidized low density lipoprotein in high fat diet fed hamsters. Avicenna J Med Biochem 2020;8:58 63.

Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 1976;15:212 6.

McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989;5:155 71.

Mesquita A, Weinberger M, Silva A, Sampaio Marques B, Almeida B, Leão C, et al. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci 2010;107:15123 8.

Kanikowska D, Kanikowska A, Swora Cwynar E, Grzymisławski M, Sato M, Bręborowicz A, et al. Moderate caloric restriction partially improved oxidative stress markers in obese humans. Antioxidants (Basel) 2021;10:1018.

Alugoju P, V K D KS, Periyasamy L. Effect of short term quercetin, caloric restriction and combined treatment on age related oxidative stress markers in the rat cerebral cortex. CNS Neurol Disord Drug Targets 2018;17:119 31.

Matés JM, Sánchez Jiménez F. Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 1999;4:339 45.

Jaouad L, de Guise C, Berrougui H, Cloutier M, Isabelle M, Fulop T, et al. Age related decrease in high density lipoproteins antioxidant activity is due to an alteration in the PON1’s free sulfhydylgroups. Atherosclerosis 2006;185:191 200.

Thomàs Moyà E, Gianotti M, Lladó I, Proenza AM. Effects of caloric restriction and gender on rat serum paraoxonase 1 activity. J Nutr Biochem 2006;17:197 203.

Cicekdal MB, Tuna BG, Charehsaz M, Cleary MP, Aydin A, Dogan S. Effects of long term intermittent versus chronic calorie restriction on oxidative stress in a mouse cancer model. IUBMB Life 2019;71:1973 85.

Verdery RB, Ingram DK, Roth GS, Lane MA. Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta). Am J Physiol 1997;273:E714 9.

Head T, Daunert S, Goldschmidt Clermont PJ. The aging risk and atherosclerosis: A Fresh look at arterial homeostasis. Front Genet 2017;8:216.

Holowko J, Michalczyk MM, Zając A, Czerwińska Rogowska M, Ryterska K, Banaszczak M, et al. Six weeks of calorie restriction improves body composition and lipid profile in obese and overweight former athletes. Nutrients 2019;11:1461.

Dorling JL, Ravussin E, Redman LM, Bhapkar M, Huffman KM, Racette SB, et al. Effect of 2 years of calorie restriction on liver biomarkers: Results from the CALERIE phase 2 randomized controlled trial. Eur J Nutr 2021;60:1633 43.

Boesch Saadatmandi C, Egert S, Schrader C, Coumoul X, Barouki R, Muller M, et al. Effect of quercetin on paraoxonase 1 activity—studies in cultured cells, mice and humans. J Physiol Pharmacol 2010;61:99 105.

Alm Eldeen A, Khamis A, Elfiky N, Ahmad R. Quercetin modulates age induced changes in the transcript levels of some apoptosis related genes in the skeletal muscles of male rats. Braz J Pharm Sci 2018;56:e18861.

Chen X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn Mag 2010;6:135 41.

Shanmugarajan T, Prithwish N, Somasundaram I, Arunsundar M, Niladri M, Lavande J, et al. Mitigation of azathioprine induced oxidative hepatic injury by the flavonoid quercetin in wistar rats. Toxicol Mech Methods 2008;18:653 60.

Zhao X, Wang J, Deng Y, Liao L, Zhou M, Peng C, et al. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytother Res 2021;35:4727 47.

Gargouri B, Mansour RB, Abdallah FB, Elfekih A, Lassoued S, Khaled H. Protective effect of quercetin against oxidative stress caused by dimethoate in human peripheral blood lymphocytes. Lipids Health Dis 2011;10:1 4.

Surmise Gomes IB, Porto ML, Santos MCL, Campagnaro BP, Pereira TM, Meyrelles SS, et al. Renoprotective, anti oxidative and anti apoptotic effects of oral low dose quercetin in the C57BL/6J model of diabetic nephropathy. Lipids Health Dis 2014;13:184.

Diaz Ruiz A, Lanasa M, Garcia J, Mora H, Fan F, Martin Montalvo A, et al. Overexpression of CYB 5R3 and NQO 1, two NAD+producing enzymes, mimics aspects of caloric restriction. Aging cell 2018;17:e12767.

Prestera T, Holtzclaw WD, Zhang Y, Talalay P. Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci 1993;90:2965 9.

Venugopal R, Jaiswal AK. Nrf1 and Nrf2 positively and c Fos and Fra1 negatively regulate the human antioxidant response element mediated expression of NAD (P) H: Quinone oxidoreductase1 gene. Proc Natl Acad Sci 1996;93:14960 5.

Peng J, Li Q, Li K, Zhu L, Lin X, Lin X, et al. Quercetin improves glucose and lipid metabolism of diabetic rats: Involvement of Akt signaling and SIRT1. J Diabetes Res 2017;2017:3417306.

Yu W, Zhou HF, Lin RB, Fu YC, Wang W. Short term calorie restriction activates SIRT1, 4 and 7 in cardiomyocytes in vivo and in vitro. Mol Med Rep 2014;9:1218 24.

Lin S J, Defossez P A, Guarente L. Requirement of NAD and SIR2 for life span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289:2126 8.

Thompson AM, Wagner R, Rzucidlo EM. Age related loss of SirT1 expression results in dysregulated human vascular smooth muscle cell function. Am J Physiol Heart Circ Physiol 2014;307:H533–41.

Sanchez Fidalgo S, Villegas I, Sanchez Hidalgo M, de la Lastra CA. Sirtuin modulators: Mechanisms and potential clinical implications. Curr Med Chem 2012;19:2414–41.

D’Onofrio N, Vitiello M, Casale R, Servillo L, Giovane A, Balestrieri ML. Sirtuins in vascular diseases: Emerging roles and therapeutic potential. Biochim Biophys Acta 2015;1852:1311–22.

Shinmura K, Tamaki K, Bolli R. Impact of 6 mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 2008;295:H2348–55.

Luo XY, Qu SL, Tang ZH, Zhang Y, Liu MH, Peng J, et al. SIRT1 in cardiovascular aging. Clin Chim Acta 2014;437:106–14.

Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010;122:2170–82.

Guarente L. Calorie restriction and sirtuins revisited. Genes Dev 2013;27:2072 85.

Miles S L, McFarland M, Niles RM. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr Rev 2014;72:72034.

Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, et al. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 1996;2:65968.